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Abstract

Hartung, Lin C. Nonequilibrium Radiative Heating Prediction Method for

Aeroassist Flowfields with Coupling to Flowfield Solvers (Under the direction

of Dr. F. R. DeJarnette)

A method for predicting radiation absorption and emission coefficients in ther-

mochemical nonequitibrium flows is developed. The method is called LORAN: the

Langley Optimized RAdiative Nonequilibrium code. It applies the smeared band

approximation for molecular radiation to produce moderately detailed results and is

intended to fill the gap between detailed but costly prediction methods, and very

fast but highly approximate methods. The optimization of the method to provide

efficient solutions allowing coupling to flowfield solvers is discussed. Representative

results are obtained and compared to previous nonequilibrium radiation methods, as

well as to ground- and flight-measured data. Reasonable agreement is found in all

cases. A multi-dimensional radiative transport method is also developed for axisym-

metric flows. Its predictions for wall radiative flux are 20 to 25 percent lower than

those of the tangent slab transport method, as expected, though additional investiga-

tion of the symmetry and outflow boundary conditions is indicated. The method has

been applied to the peak heating condition of the Aeroassist Flight Experiment (AFE)

trajectory, with results comparable to predictions from other methods. The LORAN

method has also been applied in conjunction with the computational fluid dynamics

(CFD) code LAURA to study the sensitivity of the radiative heating prediction to

various models used in nonequilibrium CFD. This study suggests that radiation mea-

surements can provide diagnostic information about the detailed processes occurring

in a nonequilibrium flowfield because radiation phenomena are very sensitive to these

processes.
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Summary

iii

When a spacecraft enters the atmosphere of a planet, it pushes some of the gas

particles it encounters with it. As the atmosphere becomes thicker, the gas particles in

this "shock layer" begin to collide with each other. This converts some of the energy

of motion that these particles gained from the spacecraft into internal motions of the

electrons and atoms inside the gas particles. When the gas density is high enough.

this process reaches an equilibrium state and can be simply described. When the

gas density is not so high, the transfer of energy proceeds slowly and remains out of

equilibrium.

The internal changes in electron and atom energy can be accompanied by a photon

of radiative energy being emitted or absorbed by a gas particle. Predicting the number

and energy of these photons in a nonequilibrium gas is the problem to be solved here.

These photons travel through the gas at the speed of light and may end up depositing

their energy on the spacecraft surface, thus adding to the heating which exists because

of gas friction. If enough energy is deposited the surface may begin to melt or burn.

Heating predictions allow the spacecraft heatshield to be designed accordingly.



ii,"

Table of Contents

List of Figures vii

List of Tables x

Nomenclature xii

1 Introduction 1

2

2.2

2.3

Historical Review 5

2.1 Topical and Literature Survey ...................... 5

2.1.1 Nonequilibrium Absorption and Emission ............ 5

2.1.2 Nonequilibrium Excitation Processes .............. 8

2.1.3 Radiative Transport ....................... 9

Computer Code Survey .......................... 12

2.2.1 Equilibrium Radiation Codes .................. 12

2.2.2 Nonequilibrium Radiation Codes ................ 14

Survey of Experimental Results ..................... [5

2.3.1 Ground-Based Data ........................ 15

2.3.2 Flight Data ............................ 16



3 Radiation Theory 17

3.1 Absorption ................................. 17

3.1.1 Atomic Mechanisms ....................... 17

3.1.2 Molecular Mechanisms ...................... "2'2

3.2 Emission .................................. 34

3.2.1 Atomic Mechanisms ....................... 35

3.2.2 Molecular Mechanisms ...................... 38

3.3 Induced Emission ............................. 40

4 Transport Theory 42

4.1 Flowfield Coupling ............................ 43

4.2 Plane-Parallel Medium .......................... 43

4.2.1 Transparent Gas ......................... 44

4.2.2 Absorbing Gas .......................... 45

4.3 Multi-Dimensional Medium ....................... 47

5 Implementation 52

5.1 Coding ................................... 52

5.1.1 Initial Setup ............................ 52

5.1.2 Nonequilibrium Excitation .................... 58

5.1.3 Radiation Properties ....................... 59

5.1.4 Radiative Transport ....................... 53

5.2 Computational Optimization ....................... 66



5.3

vi

5.2.1 Radiation Calculation ...................... 67

5.2.2 Excitation Calculation ...................... 68

5.2.3 Radiation Subgrid ........................ 70

Flowfield Coupling ............................ 73

Results and Discussion 76

6.1 Comparison to Experiment ........................ 76

6.1.1 Ground-Based Data: AVCO Shock Tube ............ 76

6.1.2 Flight Data: Project FIRE .................... 7"7

6.2 Nonequilibrium Test Cases ........................ 85

6.2.1 Mars Return ............................ $5

6.2.2 Aeroassist Flight Experiment .................. 90

7 Flowfield Model Studies 95

7.1 Baseline Models .............................. 96

7.2 Energy Relaxation ............................ 97

7.2.1 Dissociation Temperature .................... 98

7.2.2

7.2.3

Vibrational-Translational Energy Exchange ........... 99

Energy Exchange in Dissociation ................ 104

7.3 Spectral Radiation Comparison ..................... 10S

7.4 Nonequilibrium Chemistry ........................ 112

7.5 Nonequilibrium Temperature ....................... 115



vii

8 Conclusions 118

8.i Accomplishments ............................. 1l$

8.2 Future Work ................................ 119

References 121

A Gaussian Units 135

B Finite Volume Formulation of Radiative Transport 136

B.1 Finite Volume Development ....................... 136

B.2 Boundary Conditions ........................... 147

B.2.1 Axis of Symmetry Boundary . . ................. 14S

8.2.2 Freestream Boundary ....................... 151

B.2.3 Outflow Boundary ........................ 153

8.2.4 Wall Boundary .......................... 154

8.2.5 Radiative Heat Flux to Wall ................... 155

B.3 Numerics and Convergence ........................ 155

B.3.1 Convergence Criterion ...................... 155

B.3.2 Selection of Relaxation Parameter ................ 157



°.,

Vlll

List of Figures

3.1 Distribution of Spectral Points for an Atomic Line ........... IS

4.1 Shock Layer Geometry for Plane-Parallel Approximation ....... 44

5.1 Example of Spectrum Optimization for Bound-Free Continuum .... 55

5.2 Example of Spectrum Optimization for a Vibrational Band ....... 57

5.3 Occurrence of Negative _',, in a Test Flowfield ............. 66

J . . 675.4 Nonequilibrium Population of Excited States of O for Negative s,

5.5 Example of Radiation Subgrid Selection ................ 71

5.6 Patchwork Grid Resulting from Application of Subgrid Algorithm Along

Each Normal Line ............................. 73

6.1 Calculated Spectrum for the Peak Radiation Point of the AVCO Ex-

periment .................................. 78

6.2 Measured Spectrum and NEQAIR Prediction for the Peak Radiation

Point of the AVCO Experiment ..................... 78

6.3 Predicted FIRE II Stagnation Line Temperature Profiles - 1631 sec SI

6.4 Predicted FIRE II Stagnation Line Temperature Profiles - 1634 sec 81

6.5 Predicted FIRE II Stagnation Line Temperature Profiles - 1637.5 sec $2

6.6 Emission Profiles for FIRE II at 1634 sec with Comparison to NEQAIR $3

6.7 Emission Profiles for FIRE II at 1637.5 see with Comparison to NEQAIR S4



ix

6.8 Spectral Variation of Stagnation Point Radiative Heat Transfer for

FIRE II .................................. $6

6.9 Spectral Variation of Stagnation Point Nitrogen Radiation for FIRE II 86

6.10 Wall Radiative Flux for Mars Return Case ............... $S

6.11 Radiative Flux Divergence for Mars Return Case with Tangent Slab

Transport ................................. 89

6.12 Radiative Flux Divergence for Mars Return Case with MDA Transport 89

6.13 Wall Radiative Flux for AFE ...................... 91

6.14 Radiative Flux Divergence for AFE with Tangent Slab Transport . . 93

6.15 Radiative Flux Divergence for AFE with MDA Transport ....... 93

6.16 Spectral Distribution of AFE Wall Radiative Flux ........... 94

7.1 Effect of T_ Models on Molecular Dissociation - 1631 sec ....... 100

7.2 Effect of Td Models on Temperature Profiles - 1631 sec ........ 101

7.3 Effect of Ta Models on Radiative Emission Profiles - 1631 sec ..... 101

7.4 Effect of a_ Models on Temperature Profiles - 1631 sec ........ 103

7.5 Effect of a, Models on Radiative Emission Profiles - 1631 sec ..... 104

7.6 Effect of AE_ Models on Temperature Profiles - 1634 sec ....... 106

7.7 Effect of AE. Models on Radiative Emission Profiles - 1634 sec . . . 107

7.8 Predicted Radiation Spectrum - 1631 sec ................ 110

7.9 Measured Radiation Spectrum- 1631.3 sec ............... 110

7.10 Predicted Radiation Spectra - 1634 sec ................. 111



X

111
7.11 Measured Radiation Spectrum- 1634.43 sec ..............

113
7.12 Predicted Radiation Spectra - 1637.5 sec ...............

7.13 Measured Radiation Spectrum - 1636.43 sec .............. 113

7.14 Effect of Chemical Kinetics Model on Temperature Profiles - 1634 sec 114

B.1 Variation of g. and ]. for a Mars Return Flowfield .......... 139

B.2 Essential Features of Axisymmetric Radiation Grid .......... 148

B.3 Top View of Axisymmetric Radiation Grid ............... 149

B.4 Typical Convergence History for MDA Solution ............ 157



xi

List of Tables

5.1 Computational Optimization- FIRE II at 1631 sec .......... 69

5.2 Computational Optimization - FIRE II at 1634 sec .......... 69

5.3 Computational Optimization - FIRE II at 1637.5 sec ......... 69

5.4 Effect of Radiation Subgrid Algorithm ................. 72

6.1 Selected FIRE II Flight Conditions ................... SO

6.2 Radiative Heat Flux Predictions for FIRE II .............. 85

7.1 Effect of Energy Exchange Models for FIRE II at 1631 sec ...... 116

7.2 Effect of Energy Exchange Models for FIRE II at 1634 sec ...... 116

7.3 Effect of Energy Exchange Models for FIRE II at 1637.5 sec ..... 1t7



a

ao

A

AFE

ASTV

b

Bu,

B

B_

C

CFD

d

D_

De_

D

DSMC

e

E

f

Nomenclature

Grid cell surface area (cm 2)

Bohr radius (cm)

Transition probability (/sec)

Aeroassist Flight Experiment

Aeroassist Space Transfer Vehicle

Normalized line shape (sac)

Einstein coefficient for absorption

Rotational constant (eV)

Radiosity (W/cm2-sec -1 )

Speed of light (cm/sec)

Computational Fluid Dynamics

Coefficients in Gauss-Seidel formulation

2nd rotational constant (eV)

Matrix element (statcoul-cm)

Dissociation energy from ground state (eV)

Direct Simulation Monte Carlo

Electron charge (statcoul)

Energy or energy level (eV)

Distribution function

Oscillator strength for line transitions

xii



xiii

F

9

G_

h

hv

I

J_

J,

J

J

k

L

LAURA

LORAN

m

MDA

?-/

h

N

NASA

Normalized line shape

Degeneracy

Incident spectral radiative intensity (W/cm2-sec -1)

Planck's constant (eV-sec or erg-sec)

Energy (eV)

Ionization potential of ground state (eV)

Radiative intensity (W/cm_-sec -'-ster)

Emission coefficient (W/cm3-sec-l-ster)

Total line emission

Rotational quantum number

Jacobian for transformation from physical to computational coordinates

Boltzmann's constant (eV/K or erg/K)

Local error in Gauss-Seidel iteration

Langley Aerothermodynamic Upwind Relaxation Algorithm

Langley Optimized RAdiative Nonequilibrium

Mass (g)

Modified Differential Approximation

Principal quantum number

Surface unit normal

Number density (cm -3)

National Aeronautics and Space Administration



xiv

NBS

P

q

CR

O

Qss

r

7

RIFSP

s

S

t

T

v

v

V

W

x

xe

y

National Bureau of Standards

Rotational transition probability

Scattering phase function

Franck-Condon factor

Radiative flux (W/cm _)

Partition function

Quasi-steady-state

Relaxation parameter

Position vector

Radiating Inviscid Flow Stagnation Point

Path variable (cm)

Radiative source function (W/cm2-sec-l-ster)

Time (sec)

Temperature (K)

Speed (cm/sec)

Vibrational quantum number

Volume of grid cell (cm 3)

Weighting factor in subgrid algorithm

Cartesian coordinate (cm)

Spectroscopic constant (eV)

Cartesian coordinate (cm)



XV

7.

2e

Z

Zk

Ol

3

.y

F

_r

0

_t

A

I/

O"

Spectroscopic constant (eV)

Cartesian coordinate (cm)

Spectroscopic constant (eV)

Ion charge number

Radiation subgrid weighting function

Correction to rotational constant (eV)

Correction to 2nd rotational constant (eV)

Line (half) half width (1/sec)

Scattering coefficient (1/cm)

Computational variable for incident intensity

Normal distance from wall to center of first grid cell (cm)

Surface emissivity

Third computational coordinate direction

Second computational coordinate direction

Angle subtended by axisymmetric grid (radians)

Absorption coet_cient (1/cm)

Absorption coefficient corrected for induced emission (1/cm)

Wavelength (cm)

Frequency (1/sec)

First computational coordinate direction

Cross-section (cm 2)



xvi

_2

Molecular state designator

Optical variable

Vibrational relaxation time (sec)

Solid angle (radians)

Spectroscopic constant (eV)

Direction vector

Subscripts:

a

A

B

C

CL

d

el

ex

f

F

i

I

J

perturbing atoms

lower electronic state

upper electronic state

capture

line center

dissociation

electron

electronic

excitation

freestream cell face

freestream cell center

grid index in x-direction

cell center index in x-direction

grid index in y-direction



xvii

J

j_, J_

k

K

l

m

P

P

Q

R

R

tot

U

W

X

cell center index in y-direction

rotational quantum number

grid index in z-direction

cell center index in z-direction

lower state of radiative transition

medium

index of electronic level

Planck

AJ = -1 rotational transition

AJ = 0 rotational transition

rotational

AJ = 1 rotational transition

radiative

species index

translational

total

upper state of radiative transition

vibrational

wall

x component or derivative

y component or derivative



xviii

Z

0

/2

+

z component or derivative

reference

frequency

ion

Superscripts:

B

D

e

J

MW

rl

P

R

S

S

"12

!

+

upper electronic state

Doppler

emission

rotational quantum number

Millikan-White

index of time step in iteration

Park

resonance

scattering

Stark

vibrational quantum number

photoionization threshold

integration dummy variable

negative y direction

positive y direction



1 Introduction

A significant portion of the heating experienced by a blunt spacecraft encounter-

ing a planetary atmosphere at high speed can be due to radiation. The radiative

heating can therefore be a strong driver on the design of a spacecraft heatshield. In

the past, most spacecraft encountering planetary atmospheres were on entry trajecto-

ries descending rapidly into the dense lower layers of the atmosphere. The heat load

they experienced could therefore be accurately calculated using equilibrium methods.

Mission scenarios currently under study, such as Aeroassist Space Transfer Vehicles

(ASTV) designed to rendez-vous with the International Space Station Freedom. and

aerobrakes used for orbit insertion in planetary exploration, present a different situa-

tion. Walberg [1] provides a summary of such missions. These vehicles use the upper

atmosphere to obtain the necessary velocity change for orbit transfer and may spend

significant amounts of time in low density regions where nonequilibrium conditions

prevail.

Numerous Computational Fluid Dynamics (CFD) codes are being developed to

solve the Navier Stokes equations for this nonequilibrium regime. These codes predict

the convective heating rates for ASTVs. A few studies of the nonequilibrium radiative

heating problem have also been made [2, 3, 4]. Nelson [5] discusses some of the

problems and preliminary results from nonequilibrium radiative heating analyses.

However there remains a need for a relatively fast and accurate method which can



be coupled to a flowfield solution in cases of heavy radiation, or used uncoupled in

cases with less significant radiation. There has also been some evidence in recent

years [4] that the one-dimensional tangent slab approximation, which is standard in

computing radiative transport, may not be adequate for some of the vehicle shapes

and applications under consideration. It will certainly not suffice to compute radiative

transport in the wake region of such vehicles where payloads will generally be located.

The objective of the present work is to develop an accurate, efficient method for

calculating radiative heat transfer under nonequilibrium conditions, to initiate the

development of a multi-dimensional transport algorithm for such radiative transfer.

and to present some initial results.

To develop a method for calculating nonequilibrium radiation, the necessary radi-

ation property models were first derived for a nonequilibrium gas. In nonequilibrium,

expressions for both absorption and emission are required since the equilibrium rela-

tionship between the two does not apply. This theoretical development is presented in

Ch. 3. These nonequilibrium radiation models were then implemented in a computer

code dubbed LORAN: the Langley Optimized RAdiative Nonequilibrium code. As its

name suggests, this code is optimized to provide radiation predictions efficiently, by

a judicious selection of spectral points determined from the distribution of radiative

transitions. Parametric studies were then performed to determine the minimum set

of optimized spectral points which would provide accurate radiative heat flux predic-

tions. This process and its results are described in Ch. 5. The optimized method



is compared to flight- and ground-based measurements, and to other nonequilibrium

radiation methods, in Ch. 6. The agreement is generally good.

To compute radiation transport without applying the tangent slab (I-D) approx-

imation, a full 3-D modified differential approximation (MDA) was adopted. Tile

derivation of this method in nonequilibrium is summarized in Ch. 4, while the nu-

merical details of its implementation are presented in App. B. This method is cur-

rently limited to axisymmetric flowfields, though the extension to 3-D flows should

be straightforward. The method has been demonstrated for two nonequilibrium flight

conditions and compared to results from the tangent slab approximation in Ch. 6.

The predicted wall radiative heating is 20 to 25 percent lower than the tangent slab

result, in line with what would be expected. There are, however, indications that the

boundary conditions of the MDA method can be improved. The radiative coupling

term, V'q'a, varies much more smoothly in the MDA solution than in the tangent slab

prediction, suggesting that the MDA method may enhance the stability of coupled

solutions.

Chapter 7 applies the LORAN radiation model to a study of the sensitivity of

radiative heating predictions. Semi-empirical models for the rate controlling temper-

ature in dissociation reactions, the cross section for vibrational to translational energy

exchange, and the amount of energy exchange in dissociation, as well as various chem-

ical kinetics models used in nonequilibrium CFD were varied and the effect on the

predicted radiative heating levels was examined. The results show that radiation is
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verysensitiveto thesemodelsthrough their influenceon the vibrational temperature.

Studiesof radiative heating may therefore provide additional insight into the valid-

ity of the semi-empiricalmodelswhich havebeendevelopedfor nonequilibrium CFD

codes.

The nonequilibrium radiation and transport methods developed for this work pre-

dict radiative heating to aeroassist vehicles with accuracy similar to that of detailed

codes. The computer time and storage requirements are significantly reduced, how-

ever. The LORAN method is therefore suitable for use in parametric studies and for

coupled solutions with nonequilibrium Navier Stokes codes. Further work on these

models is expected to speed up solutions still more.



5

2

2.1

Historical Review

Topical and Literature Survey

The previous work which has relevance to this problem can be subdivided into

several subject areas: nonequilibrium absorption and emission in individual radiating

mechanisms, nonequilibrium excitation processes, and transport models.

2.1.1 Nonequilibrium Absorption and Emission

Emission and absorption of radiation in a gas result from transitions between

energy levels. In atomic species, all electronic energy levels as well as free electrons

may be involved in radiative transitions. For molecules, radiation also occurs due to

transitions between rotational and vibrational energy levels. Atomic radiation arises

from bound-bound transitions (atomic lines), bound-free transitions (photoionization

or radiative deionization), and free-free transitions (Bremsstrahlung radiation). Here

"bound" and "free" refer to the state of the electrons involved in the radiation-

inducing transition. Molecular radiation is more complex because of the large number

of energy levels available for transitions. The resulting structure of closely-spaced lines

is referred to as a molecular band system.

The complete spectral variation of emission and absorption is contained in the

absorption coefficient, to,, and the emission coefficient, j_. The absorption coefficient

is obtained from the product of the population, .'_, of an energy level and its radiative



absorption cross section, _r_., summed over all the energy" levels available:

energy levels n

The emission coefficient is found from a similar expression, in which the amount of

energy emitted, hun,,, also appears, and the absorption cross section is replaced by

the transition probability for emission, A,._,:

J'= _ iV. _ hu,._,A,,,_, (2.2)

energy levels n n'<n

In equilibrium, the electronic energy level populations are determined as a func-

tion of temperature according to a Boltzmann distribution. The rotational and vi-

brational energy levels of each electronic state of a molecule are populated according

to the equilibrium partition function. Species concentrations in equilibrium are re-

lated by Saha's equation. These equilibrium relations allow radiative properties to

be referenced to temperature and the concentrations of a few major species, allowing

the development of simple radiation step models. Also, under equilibrium conditions

the absorption and emission coefficient are related according to Kirchhoff's law, so

that Eq. 2.2 is not needed.

In nonequilibrium, these simple relations for the energy state populations and

species concentrations no longer apply. The problem is now to determine the no,equi-

librium energy level populations. The rotational and vibrational states in a molecule

may be assumed to be populated according to distinct rotational and vibrational tem-

peratures, respectively, if the nonequilibrium is not too severe. The electronic states.



however, equilibrate more slowly so that a single electronic temperature cannot be

defined. In this situation, the energy level populations in the absorption and emis-

sion coefficients must be calculated individually at every point where they are needed

according to the specific local conditions. In addition, the emission coefficient can-

not be calculated by Kirchhoff's law. The radiative cross sections, however, depend

only on the configuration of an individual atom or molecule. They are the same for

equilibrium and nonequilibrium conditions.

A number of sources present expressions for the equilibrium absorption and/or

emission coefficients of the individual radiating mechanisms. For example, Zel'dovich

and Raizer [6], provide a comprehensive classical development with discussion and

references to quantum corrections. Other classic texts present similar results [7]. Ar-

maly [8] provides practical expressions for the continuum absorption coefficients of

atoms and ions, following the method of Biberman and Norman [9]; which itself fol-

lows their earlier work [10] and that with Ulyanov [11]. The latter work is an attempt

to correct the classical hydrogenic model of the atom to account for the actual con-

figuration of a radiating species and its influence on the absorption coefficient. Jones

et al. [12] provide a critical review of many of the important radiating mechanisms

and species.

A number of other researchers have also considered the contributions of various

parts of the spectrum in a more qualitative sense for conditions of interest in re-entry

studies. Horton [13] has studied the importance of the ultraviolet portion of the



spectrum as a contributor to the radiative heating of re-entry bodies. He has also

studied the potential impact of nonequilibrium on the radiative heating [14].

Only two approaches to absorption and emission in nonequilibrium have been

identified. The correction factor method, developed by Clarke and Ferrari [15] and

Chapin [2], and now in use by L. A. Carlson and others [16, 17, 18], incorporates a

simple equilibrium step model for absorption with correction factors to account for

the nonequilibrium of the excited state populations. The detailed line by line method

developed by Whiting et al. [19] and implemented for nonequilibrium only in Park's

NEQAIR code [20] treats individual rotational lines in the molecular band spectrum

as well as individual atomic lines and atomic continuum processes. In this method the

nonequilibrium absorption coefficient is obtained by solving for the nonequilibrium

populations of the energy levels using the quasi-steady-state (QSS) method described

in the next section. The nonequilibrium emission is obtained by calculating a quasi-

equilibrium or excitation temperature for each radiative process, allowing the use of

Kirchhoff's law.

2.1.2 Nonequilibrium Excitation Processes

To calculate the nonequilibrium populations appearing in the absorption coefl:i-

cient, the rates of population and depopulation of energy levels must be known or

assumptions must be made about how the states are populated. Excitation rate data

are not widely available because of the experimental difficulties involved in obtain-

ing them. In the future, computational chemistry may be applied to predict these



rates,but suchcalculationsarecostlyandthereforecomputer-andtime-limited. Park

[3.20] hascollecteda setof ratesfor the principal transitions involvedin air radiation

and incorporatedtheminto a quasi-steady-state(QSS)modelof electronicexcitation.

The QSSmodelassumesthat the rates of population and depopulation of an energy

level are much larger than the net rate of change of the level's population. This ailows

the excitation calculation to be uncoupled from the flowfield solution. In flow regions

with strong gradients (such as inside captured shocks and in boundary layers) this

approximation loses accuracy because it neglects the excitation history.

2.1.3 Radiative Transport

The problem of radiative transport is well-known. It requires solving an integro-

differential equation for each frequency and for each direction in the flowfield. This

complexity arises because unlike a temperature field in conduction problems, the ra-

diation intensity in any direction is independent of that in any other direction: and

that at a given frequency (energy) is separate from that at any other frequency. The

complete equation of radiative transport has been derived in many sources, including

Zel'dovich and Raizer [6], Ozisik [21], and Vincenti and Kruger [22]. Using Ozisik's

notation, the governing equation for the spectral radiative intensity, I_, in a partici-

pating medium is

l OI.(s, _, t) OI.(s, fi, t)
+

c Ot Os

1, £=j;(s,t) + _%(s) '=4_

' -' - fi, t)+ [_:,(s)+ h,(_)]I,,(s,

_(¢_'.¢_)[_(_,¢_',t)dff (2.3)
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' is the absorption coefficient corrected for induced emission.where _

The first term on the left-hand-side is immediately omitted in most radiative heat

transfer studies because the speed of light, c, is large and the time derivative of

intensity is small in most applications of interest. The scattering terms (containing

_f_ and ib) can also be neglected, since the emphasis of the present study is on non-

ablating, low-density flows. In such flows there is almost nothing to induce radiation

scattering, and "/_ _ 0. With these two simplifications, the transport equation reduces

to:

Oil(s, _, t)
+ g',(s)I_(s, _, t) = j_(s, t) (2.4)

Os

where t is now a parameter. This equation can be solved numerically with the as-

sumption of a one-dimensionM medium. For multi-dimensional radiation transport.

additional simplifications will be necessary. The most common radiative transport

models used to date are the optically thin model and the tangent slab model. The

first assumes a transparent gas, so that the transport problem reduces to a simple

summation across the region of interest. The second assumes that all properties vary

in only one direction, so that the radiative transport equation is reduced to a one-

dimensional integro-differential equation. A typical discussion of the tangent slab

method can be found in Ozisik [21] or in Nicolet [23, 24]. An extension of Nicolet's

method is given by Bolz [25].

Several other approximate methods for the solution of the radiative transport

problem have been developed. The optically thick approximation assumes that emit-
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ted radiation is reabsorbedwithin a very small distancefrom the point of emission

[21, Sec. 9.2]. This is not the case for blunt body flowfields, except perhaps at the

centers of very strong atomic line transitions, so this method is not applicable to the

current problem. Another series of methods, known _zriously as moment methods.

discrete ordinate methods, or spherical harmonics methods, obtain solutions by ap-

proximating the radiative intensity with a series of functions of increasing order [21.

Sec. 9.8].

Multi-dimensional solutions to the transport problem have been developed by

Truelove [26] and Modest [27], but these assume equilibrium flow and the validity

of Kirchhoff's law. In addition, Truelove assumes a gray gas, in which the absorp-

tion does not vary with wavelength. Cheng and Ozisik [28] have developed a three-

dimensional algorithm for stagnation flows, but it uses the diffusion approximation for

radiative transfer which is valid only in highly absorbing flows. No multi-dimensional

transport algorithm currently in use for flowfield solutions has been identified, though

an effort toward this end is underway by Edwards et al. [29].

Equally important to the development of radiative transport algorithms may be

the formulation of rules governing the intervals at which radiation must be computed.

Especially in a coupled solution, it is preferable to minimize the number of times the

costly radiation model is invoked. Bolz [30] has developed an algorithm for selecting

a radiation transport subgrid in an equilibrium flowfield by evaluating a weighted av-

erage of the derivatives of important flow variables. This avoids calculating radiation
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at every grid point in a flowfield region wherea[1the properties are changing very

slowly.

2.2 Computer Code Survey

A large number of computer codes for radiation prediction have been developed

over the years. Unfortunately, many of these codes fell into disuse during the 1970's

when hypersonic research was limited. As a result, most are no longer available for

current study without extensive redevelopment. This survey, therefore, will consider

only those codes known to be available with minimal reconstruction required.

2.2.1 Equilibrium Radiation Codes

Gray gas

Gray gas models are the simplest of all radiation models, assuming that emission

and absorption do not vary with frequency. This assumption is violated for blunt

body flowfields, so these models have been rejected as candidates for the current

effort and will not be discussed further.

Step models

A number of researchers have developed step models, in which the absorption

coefficient is considered constant in several wavelength intervals. Olstad [31] has

developed an eight step model, while Zoby et al. [32] used a 58-step model to study

outer planet entry. These step models depend on the assumption of equilibrium.
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They makeextensiveuseof curve-fits and refer radiation mechanismsto a ground

state in order to obtain the desiredsimplicity.

The eight-stepmodeldevelopedby Olstad [31]is still available. This modelmakes

useof curve-fits for the radiative cross sections assuming equilibrium conditions. It

requires input of the concentrations of five species (N, O, N2, O_, and e-), and uses

these to infer the concentrations of minor species, again assuming equilibrium. The

details of this model can be found in the reference.

Step models for radiation emphasize simplicity and speed at the expense of ac-

curacy. This trade-off is often acceptable for engineering methods which provide

estimates of the radiative heat load. These simple models are ill-suited to nonequi-

librium, however, where properties are no longer simple functions of temperature

and pressure but depend also on the concentrations of the various species. In that

situation, the simple relationships used to develop step models no longer hold.

RAD/EQUIL

The RAD/EQUIL code developed by Nicolet [23, 33] is still in use in its original

form. It also serves as the basis for at least two coupled equilibrium inviscid flow

codes: RIFSP, which computes a stagnation line for a blunt body; and RAIF, which

computes a complete blunt forebody [34]. This method is a hybrid between the step

models and detailed models. It computes continuum processes from curve-fits for

equilibrium, and reports the results at a finite number of points (generally 20-40).

The line radiation is computed in greater detail, with each line considered being
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representedby fifteen spectral points. However.thesedetailed results are integrated

by the code,and presentedat a small numberof intervals (detailed output can also

beobtained, but is not the default). This processprovidesresults of good accuracy

and allowsconcisereporting.

2.2.2 Nonequilibrium Radiation Codes

RADMC

This nonequilibrium correction factor method is currently being developed by a

number of researchers [16, 17, 18, 35]. It will be referred to collectively as the RADMC

method. In this method, the eight-step model for absorption developed by Olstad

[31] is adopted to describe the radiation spectrum. Approximate correction factors

for nonequilibrium energy level populations are then developed. These depend on

modeling the excitation with a small number of energy levels. The result is a verb

fast but approximate nonequilibrium radiation model.

NEQAIR

The detailed line-by-line approach developed by Whiting et al. [19] is implemented

for nonequilibrium in the NEQAIR code of Park [20]. This method includes detailed

descriptions of the radiative transitions, computing each individually. The nonequilib-

rium electronic state populations are calculated using the QSS approximation. This

is a very detailed but computationally costly model for nonequilibrium radiation.

Typical calculations require on the order of l0 s to 106 spectral points [29, 36].
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An emerging method models radiation in a Direct Simulation Monte Carlo (DSMC)

flowfield solution. The radiation modeling for DSMC is still being refined but has

great potential, particularly for nonequilibrium tow density flows. The power of

DSMC lies in its direct modeling of the physical processes involved, and therefore

suffers most from uncertainties in what these models and their parameters should be.

It also requires large amounts of computer time, though advancements are reducing

this considerably. The computer time required is proportional to the flow density.

however, restricting the usefulness of DSMC for lower altitudes. Moss and Price give

some initial results for the Aeroassist Flight Experiment (AFE) vehicle in both fore-

body and wake regions [37} using a method developed by Bird [38]. A. B. Carlson

[39, 40] has also studied a shock tube condition with a DSMC method including

radiation.

2.3

2.3.1

Survey of Experimental Results

Ground-Based Data

The principal source of ground-based data is a series of shock tube experiments

performed by the Avco-Everett Research Laboratory around the early 1960's. These

results are reported in a number of sources, including Teare et al., [41], Allen et al.

[42, 43, 44, 45], and Kivel [46]. The conditions tested include velocities between 6

and 10 km/sec. Only the high end of this range is of interest for the current problem.
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Experiments werealsoperformed by Page[47, 48, 49] and Nerem et al. [50. 5l.

52,53, 54,55, 56, 57, 58, 59, 60]. These shock tube results are difficult to use because

the data were reinterpreted in the years following the experiments. No attempt will

therefore be made to match this data here.

2.3.2 Plight Data

Project FIRE

The FIRE flight project of the mid-1960's was conducted to determine the heat

load on an Apollo-type vehicle entering Earth's atmosphere at 11.4 km/sec [61, 62].

It is one of the only sources of flight radiative heating data applicable to the present

area of study and will therefore be emphasized in verifying the development of this

radiative heating prediction method.

Future Flight Projects

Looking to the future, NASA's Aeroassist Flight Experiment is anticipated to

provide radiative heating data for a blunt body on an aerobraking trajectory in the

earth's atmosphere. The heat shield design is non-ablating, and both the forebody

and wake regions are planned to be instrumented. The data from this project should

provide a valuable verification set for radiation prediction methods.



17

3 Radiation Theory

Absorption and emission coefficients describing the radiation phenomena occur-

ring in a blunt body flowfield can be developed under conditions of thermochemical

nonequilibrium for each participating transition between energy levels. The develop-

ment for the absorption coefficient corresponding to each type of transition is pre-

sented below. A similar development for the emission coefficients is given in Sec. 3.2.

Absorption

Atomic Mechanisms

Bound-Bound Transitions

The model for radiation absorption in bound-bound transitions used in the present

study is that developed by Nicolet [23] for the RAD/EQUIL code. This model resolves

a line by distributing about 15 spectral points starting from the line center as shown

in Fig. 3.1. It has been modified as required for nonequilibrium. Following Nicolet's

development, the absorption coefficient in a line is given by

71-e 2

_, - fl,,Nb(v,N,,Tt, T,.. .) (3.1)
mc

where fl_ is the oscillator strength of the transition, Nl is the nonequilibrium popu-

lation of the lower state of the transition, and b is the line shape function which may

depend on a large number of variables. The constants e, m, and c are the electron

charge, electron mass, and speed of light, respectively.
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Figure 3.1. Distribution of Spectral Points for an Atomic Line

The line shape is a normalized function which can be described by one of a number

of theoretical models depending on the predominant broadening mechanism. Two

such line shapes are considered here. The Lorentz shape describes lines in which Stark

broadening by electron impact dominates, as is the case for heavy atomic species. This

line shape is given as

_. = 7S/Ir
(u - uct) = + (7s)2 (3.2)

where the dependence of b on the gas conditions has been omitted. Here _ts is the

Stark (half) half width, and VCL is the frequency of the line center. The (half) half

width is the half-width of the line at half its height, and is a common descriptor for

line shapes.

The (half) half widths have been calculated by a number of authors, most notabh
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Griem [63]. Pageet al. [64]havenoted that theseline widths vary with a powern of

temperature Tas

C(T) _ _ C(T0) (3.3)

thus allowing use of a single input reference at the reference temperature To for

Stark broadening. In nonequilibrium, the temperature in this equation should be the

electron temperature T_,

The mechanism of resonance broadening (also called collision or pressure broaden-

ing) yields Lorentz line shapes as well. This mechanism may exceed Stark broadening

for situations with low ionization. Nicolet [23] gives the approximate (half) half width

as

7R _ 3rr _ L2---_--_vR g_ (:3.4)

where Na is the number of perturbing atoms per unit volume, and gt and g. are the

degeneracies of the upper and lower states, respectively. The effective Lorentz line

width is then the sum of 7 s and 7 n.

The second type of line shape is the Doppler profile, which describes line broad-

ening due to thermal motion of the atoms. This Gaussian Line shape is given as

b_ = _ exp

The Doppler (half) half width is given by

(v - vct_)_ in 2](.y_)2 (:3.._)

- c V m, (:3.6)
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wherek is Boltzmann's constant and ms is the mass of the radiating particle of species

s. The temperature is the heavy particle translational temperature, since the effect

is due to the thermal motion of the atoms.

The Lorentz and Doppler line shapes can be combined into a single curve known

as the Voigt line shape which requires significantly more computation. Under the

conditions of interest in this study, the two (half) half-widths have been found to be

of different orders of magnitude. Therefore, it is felt that the use of one or the other

of the simpler line shapes should be adequate. Once the choice is made for each given

condition, the absorption coefficient in a line can be computed from Eq. 3.1, using

input data for the oscillator strength and the line width and predicted nonequiiibrium

energy level populations.

Bound-Free Transitions

A model for bound-free transitions can be developed assuming a hydrogen-like

atom. A good source of such a development for an equilibrium gas is Zel'dovich

and Raizer [6, Sec.5.5]. The radiative cross sections developed there apply also to

nonequilibrium since the configuration of an individual atom is unchanged. From

that reference therefore the cross section for an atomic energy level n is:

1 647r4rnZ4e 1°

(r_,_ = _ 3uach6nS (3.7)

where Z is the charge number (Z = 1 for neutral species) and h is Planck's constant.

Once the cross section is known it is a simple matter to compute the spectral ab-
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sorption coefficientfor the bound-freeprocess,given the nonequilibrium populations

of the electronicenergy levelsof the atom. The relation is

O_

rt*

The lower limit n" indicates the photoionization threshold. This is the lowest atomic

energy level from which a photon of frequency u can detach an electron. The upper

limit in practice has a finite value corresponding to ionization of the atom.

While quite accurate, Eq. a.7 can still be improved. In particular, a quantum

correction [6, p. 266] may be applied to it. However, as stated in the reference,

the impact of this correction is negligible for most cases of practical interest. More

significant is the error in this expression for low quantum states near the ground

atomic state. For these states, the hydrogen-like assumption may induce considerable

error. For many atoms, the cross section of the ground state is well known from

experimental data. This information can be used for transitions involving the ground

state instead of the value predicted by Eq. 3.7.

Free-Pree Transitions

A model for free-free transitions can be developed using similar semi-classical

methods. Only transitions due to the proximity of an atomic ion are considered.

Free-free transitions caused by the presence of neutral atoms and molecules are as-

sumed to be negligible. Zel'dovich and Raizer [6, Ch. 5.3] is again a good source.

Their result can be rederived without using equilibrium assumptions except for a
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Maxwell distribution of the energiesof the freeelectronsat the electrontranslational

temperatureTe. In this case, the only change in the result is that Te replaces It. The

equation for the free-free absorption coefficient can therefore be written as

4(
,,1/2

_ = "3 kamkTe,ll hcmvaN+N_ (3.9)

where :V+ and iV_ are the concentrations of the appropriate ion and of electrons.

respectively.

This result could also be modified by a quantum correction, but again the effect

is minimal for the conditions of interest here.

3.1.2 Molecular Mechanisms

The treatment of molecular radiation requires consideration of vibrational and

rotational transitions within the molecule, as well as electronic transitions; and com-

binations of the different types of transition. Each such transition contributes a

discrete line to the radiation spectrum, whose line center frequency is determined by

the energy differential of the transition. While a line-by-line calculation of molec-

ular radiation is possible, it does not fit the requirements of the present study for

a relatively rapid calculation method which can be coupled to a flowfield code. As

an alternative, therefore, the "smeared band" model of molecular radiation will be

adopted here. In this model, the rotational line structure of the molecular radiation

is smoothed to provide a continuous variation of the absorption coefficient. Because

the rotational energy levels are so closely spaced, the lines resulting from rotational
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transitions are nearly overlapping except in very rarefied conditions. The error intro-

duced by this approximation should therefore be acceptable under most conditions of

interest.

The basic development of the "smeared band" model can be found in a number of

sources. The development given below is an enhancement of that found in Zel'dovich

and Raizer [6, Sec. 5.3]. It incorporates higher order expressions for the molecular

energy levels from Herzberg [68], while eliminating equilibrium assumptions. In what

follows ZR will refer to the text by Zel'dovich and Raizer. Herzberg will refer to the

just-quoted reference.

The energy differentials for the molecular transitions will be established first. For

electronic transitions, the energy levels are given by E,, the electron energy of a

particular energy level measured from the ground state. For vibrational transitions.

the energy levels are obtained from the fourth order expression given by Herzberg

which includes a correction for the anharmonicity of the vibrational energy potential.

The vibrational levels range from the zero-point energy at v = 0 to some maximum

t, determined by the dissociation of the molecule. The coefficients in the above ex-

pression are spectroscopic constants which are available from a number of sources.

The energy levels for the rotational transitions, including a correction for non-rigid

oscillators, are

= hc[B_J(J + 1)- D_J2(J + 1) 2] (3.11)Er
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where the spectroscopic constant B_ has been corrected for rotational effects as

3.12)

and the second rotational spectroscopic constant D_ is

1 4B_
D_ = D, + 3¢(v + -_) _ D_ = ---_-

3.13)

These levels range from zero energy at J = 0 to some maximum J again determined

by dissociation of the molecule for each vibrational level.

The complete molecular energy level is

Etot - Ee -1- Ev + Er (3.14)

where the individual energy contributions are given by Eqs. 3.10 and 3.11 above.

Designating the upper level by the superscript u and the lower level by l the wave

number (inverse wavelength) of a particular transition is

1 Et_ ` - EIo t

A hc
(3.15)

For convenience in manipulating these expressions one special wave number is de-

fined. This is the wave number with zero rotational quantum number and arbitrary

vibrational quantum numbers:

A_,__,---7= hc + he (3.16)

The formidable expression for the wave number of an individual transition is

simplified by the selection rules for rotation. These rules are discussed in various
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sourcesincludingZR and Herzberg,and result in the requirementthat .._kJ= J"-f =

0. +1, or - 1. In addition, the 0-0 rotational transition is forbidden and in the case

of transitions between certain molecular states denoted by _ all AJ = 0 transitions

are forbidden. A detailed discussion of these selection rules and of the designation

of molecular states is outside the scope of the present work. Nevertheless, these

rules allow the development of three specific wave numbers for the aXJ = -1, 0, 1

transitions, which are denoted P, Q, and R respectively.

1 1_ +a" D:)+ (2D' +,.D:)
Ap Av_,vt

+J'_ (D l, - B'_- D: + B:) + J' (-B:- B'_) (3.17)

1 1

_QQ _ _1_11;

+ jr' (DZe_ D'_) + j,3 (2D:- 2D:)

+J" (D _, - B_,- D: + B:) + jr (B: - B_) (3.18)

1 1

AR A,.,t
+ J" (D:- D:) + f_ (2D:- 6D:) +

f2 (Dr_ Bt_ laD: + B:) + J' (3B: - 12D: - Blv) + 2B:- 4D_' (3.19)

Once the molecular band spectra are thus determined, it is necessary to evaluate

the probability of a transition between levels in order to obtain an expression for

the absorption coefficient. This probability is obtained from a quantum mechanical

analysis. The resulting expression for the transition probability is given for instance

in ZR:

As,,,,ju 64rP _a _ (3.20)
Aul "-" ,"tAvljl -- 3hc3 Bv_,au,AvlJ , DelBa q,,_v_ PJ_'a'
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where q_._L._is the Franck-Condon factor for the probability of a vibrational transi-

2
tion, and pjujt is the probability of a rotational transition. D,aBA is the square of the

matrix element 1 arising from the wave function in the quantum mechanical analysis.

A is the Einstein coefficient for spontaneous emission, while super- and subscripts A

and B denote the lower and upper electronic levels, respectively. Using the princi-

ple of detailed balancing leads to the well-known relationship between the Einstein

coefficients for emission and absorption (see for instance [66] or ZR)

c 2
- g"ao (3.21)

Bt,., 87rh u_t gt

Note that if this relationship is expressed for energy states rather than energy levels

the degeneracies g_, and gt are identically one, by definition. As a practical matter

the use of energy levels, which may be degenerate, is preferred because it reduces the

bookkeeping required.

The absorption coefficient, xl_, is related to the Einstein coefficient for absorption,

B_, by [22]

xl,, = niBt,,hua, (3.22)

Substituting Eqs. 3.20 and 3.21 in this last expression yields the desired expression

for the spectral absorption coefficient:

gBv_d_ 87r 3 N.4vtjt _.4vtJt,Bv"J _ D_ts a q_."_ PJ_J' F(u) (3.23)
xua_zJz's"_J_- gAdj_ 3he

where F(u) is a normalized line shape. This expression must be evaluated for each A.

lsre2, used by Park in NEQAIR, is the nondimensional value, which is divided by (ace)"-, the

squared product of the Bohr radius and the charge of an electron.
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B, v", v t, J_', jt in order to obtain the complete absorption spectrum of a molecular

species. The "'smeared band" model averages out the rotational line structure. This

is done by summing Eq. 3.23 over J_, and introducing an average frequency, v-B_,.a_,,

for the rotational lines. The result is:

87r3 9B N4v_j_. D _lSa q_v' F(u) YBv". Av_ (3.24)

where use has been made of the relation _j_ pj_j_ = 1 which expresses the fact that

all transitions occur between two levels of the molecule. The degeneracy has been

expanded into its components:

gAt, J = 9AgvgJ (3.25)

where

g_ = 1 (3.26)

since there are no degenerate vibrational levels, and

g.] = 2J + 1 (3.27)

For the vast majority of rotational lines, J >> 1, and the ratio of rotational degen-

eracies in Eq. 3.23 is approximately equal to one. This approximation has been used

even for transitions with small J. While the error introduced in a single transition

with a low rotational quantum number can be as much as 300 percent, only a few

transitions have low J so the effect on the overall absorption coefficient is small. The

error incurred by introducing the average frequency-YB_",A_ for all rotational lines in

the v t -v _ band is minimal, on the order of one to seven percent.
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Proceedingtowardsthe completeabsorption coefficient,Eq. 3.24 is now summed

over the final vibrational level v _. This yields

_I"Avl dl, B

3hcgA _.
(3.2s)

Here the frequency remains inside the summation and is not averaged, as the variation

involved can be large.

The mean value theorem is then used to define an average absorption coefficient

for a line, by integrating over one line width:

f. 8rr3 gs _ _ - AuK%d jI, B du l_r4v_ j, DetBA E q_,u,_,-_Bvu,Avl -" _I..,AvlJI B (3.29)
,_e 3hc gm " ,,

where __Auis the line width.

Equation 3.29 is then solved for g, and summed over the initial rotational and

vibrational levels.

87r3 gB 2 oo oo _ WArt jr
-E,,A8 - 3hcgADetBA___,_, qv",; u'B,_,,.Av' (3.30)

where the sum term is zero for any transition which does not absorb radiation in the

frequency interval under consideration.

Equation 3.30 is the complete formula for the "smeared band" absorption coeffi-

cient for a molecular species. In this form it contains two approximations: the use of

an average frequency for the rotational lines in a vibrational band, and the averaging

over a single line. In order to use this expression in a radiation model, its various

parts must now be amplified in terms of known quantities.
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Under conditions of nonequilibrium, the number density in a particular energy

level is given by the following expression,wherethe existenceof rotational and vibra-

tional temperatureshasbeenassumed.

exp (-Ev_/kT_) ga, exp (-Ej,/kT_)
Na ,a, = Na (a.at)

Q_,(T_,) Q,.(T,)

Q_ and @ are the vibrational and rotational partition functions, respectively. The

population of the electronic energy level Na must be obtained from some nonequi-

librium excitation calculation. In the present work, Park's quasi-steady-state (QSS)

method [67] has been used. The partition functions are obtained from their definition:

o_

Q::(T::) = _ exp('E_:/kT_) (3.32)
x=O

In practice the upper limit of this summation is imposed either by predissociation in

the rotational case or by numerical limits arising from inaccuracies in the higher order

coefficients of Eq. 3.10 for the vibrational case. The rotational case will be discussed

in a separate section below. For the vibrational case, the sum may be terminated

when the contribution of the next term is less than some threshold percentage of the

partition function. It is also necessary to monitor the size of each term to detect the

onset of significant inaccuracies in Eq. 3.10. These occur at a high enough vibrational

quantum number that the sum for the partition function can be truncated at that

point.

The next term to be examined in Eq. 3.30 is the _u term. This term introduces

another approximation of the "smeared band" model. The line width __u is assumed



30

to be approximatelyequal to an averageline spacing. To evaluate the line spacing.

consider the three expressions for the line centers, Eqs. 3.17 to 3.19. If the D_ terms

are neglected compared to the B_ terms, since they are much smaller, the equations

reduce to:

1 i_ +J'=(B:- <) +J' (-B:- B'_)
1 1- _ +J" (8:- B'_)+J' (8: - 8'°)

-"_Q - ,kv,, v _

(3.33)

(3.34)

1 1

A---R-- A..., + J'_ (B: - Bt_) + J' (3B_ - B[.) + 2B: (3.35)

For a line with f >> 1, which is the case for most lines, these three expressions

collapse into the single form:

i u I
+ j12 (B:- B',) (3.36)

Soh, ing for u and taking the derivative with respect to J, remembering that _J = 1

for adjacent lines, gives

Au = 2cflB_, - Be[ (3.37)

where the absolute value is taken to ensure that the average spacing is positive.

Equation 3.36 also yields an approximate expression for jt in terms of the wavelength

or wave number:

1 1 ) 1 (3.38)J_ _- A A_r B,,,, - B,,

Note that since jl2 > 0, the right-hand-side of this equation must also be positive.

This implies for B._ > B_ that A_,_,_ > A, and for B,. < Bv, that A_,_,_ < A. These

requirements are the mathematical statement of the fact that each vibrational band
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absorbsin only a portion of the spectrum. In evaluating the absorption coefficient for

a particular band, the wavelength or frequency under consideration must be checked

against the above conditions to avoid adding superfluous contributions.

Returning now to Eq. 3.11 for the rotational energy levels, the assumption of

•1 t >> 1 is again made. This allows the replacements d r + 1 _-, jl and 2J l + 1 _ 2f.

Equation 3.38 can then be substituted in Eq. 3.I1, with the result:

Er " hc B_ - a_ v l
- Bv_ B_

4B_3 (1 1 ) 2 I } (3.39)l_ A Av_v, (Bv_ By,) _¢0 e

This expression can then be substituted in the rotational exponent in Eq. 3.31. It

constitutes the final approximation of the "smeared band" model.

The last term to evaluate in Eq. 3.30 is the averaged frequency, gBo_ a_z. This

must be evaluated separately for P_,and non-N transitions according to the rotational

selection rules discussed above. For a given vibrational transition, Eqs. 3.17 to 3.19

describe the line centers of each rotational transition (with Eq. 3.18 not allowed for

E transitions). Recalling also that the 0-0 rotational transition is always forbidden.

gB_.,a_' can be evaluated as follows.

= (-2) -- + _ + + ,\nb,--0

where the first form is for non-E transitions, and the second for E transitions.

(3.40)

(3.41)



32

Substituting Eqs.3.17to 3.19in Eq. 3.40and 3.41and collectingterms results in

the followingexpressionsfor the averagedfrequency.

c c(J£o=+ 1) c

{ +(3z): 3D:) too=- (J':: + 1)(.J,,:: + 1)(3Jm:: + 3J':: + 1) 30

+ (6D':-6D:) -'_::"/ 2('1":_:4 + 1)2 + (3B v: -3B_' - 1,SD: + 3D'_)

l l l)(2J_== i) J_oAJ_o=+i
6 + (3B2 - 3B_v - 12D:) ' '2

(3.42)

I C

_ c c(J'_:: + 1) (2B2 _ 4D_') + 2J_,_, + 1uS,,_.A_,_ -- A_,,,,/ + 2J_, + 1

{(2v'_ 2D:)' _)(2J'o= ' _ J'_°=1)(3J'_,- (J':: + + + 3J'_= + 1) 30

+ (4D'_-4D:) .j_2(j_, + 1) _ + (2B: - 2B' v - 14D_' + 2D',)
4

J'==(gmo=+ i)J'_,=(J_,.= + +
6 + (2B: - 2B',_ - 12D:) ' ' (3.43)

where again the first form is for non-E transitions, and the second for E transitions.

While these equations could be implemented as is, it is simpler and still accurate to

again neglect the D_ terms compared to the B, terms. The result is:

[ _v@v_ u l

2B,,(J',,_ + i)

-uS,_,,,A_' = c + 3J_ + 1

2B_(J'o= + 1)
VSv,,,.4_ = c + 2J_ + 1

u l ]
3(B,_-B_)f tj t 1)(J_= 2)

+ a--_2o;;_ too=,_o=+ +
(3.44,t

J'.,_= + 2)]
2(B2_B_) i _ )( t

(3.4.5)

These equations for non-E and E transitions can then be substituted in Eq. 3.30. and

the averaged spectral absorption coefficient can be calculated.
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The final result for the "smearedband" molecularabsorption coefficientis

m

KV.4B -" _ Art8 rra gs D 2 _ _
3hc gA _IBA _ q_' -PSi=,

Ol tJ u

_j :V.4 exp (-Ev,/kT,.,) 2J t + I

exp(-hc B_ a_ t, l 1 1 1 1

(3.46)

where F is given by Eq. 3.44 for non-E transitions, and by Eq. 3.45 for E transitions,

and the vibrational energy Ev_ is evaluated from Eq. 3.10 with the appropriate values

for the lower energy level. To be consistent, the approximation 2J t + 1 _ 2J t is used

to reduce the fraction inside the summation over jr.

Maximum Rotational Quantum Number

The maximum rotational quantum number J,-n,_x can be determined to varying

levels of approximation. The first order calculation would predict the maximum to

occur when the energy of a level exceeds the dissociation energy of the species. As

discussed in Herzberg [65], however, predissociation may occur due to the shape of

the energy potential curve. Whiting et al. [19] developed a computer code based on

this fact to predict the maximum rotational quantum number. The method was later

refined by Whiting [68]. This most recent method has been adopted for use here.

For each vibrational band of each molecular contributor, it computes the maximum

allowable rotational quantum number to be considered, based on the shape of the
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Morse-centrifugalpotential describingthe rotating and vibrating molecule.

Furtherenhancementsto the theory for the maximumrotational quantum number

are possible,but it is felt that this levelof accuracyis sufficientfor the current work.

3.2 Emission

Under equilibrium conditions, the emission coefficient is found from the absorption

coefficient using Kirchhoff's law.

j (s) = - exp (3.47)

where the factor in parentheses accounts for induced emission and the black body or

Planck intensity is

2hu 3

I,p(r) = c2 [exp(hu/kT)- l] (3.4S)

Combining these two equations gives the following relation for emission:

2hu a

j2(s) = x,(s)_exp(-hu/kT) (3.49)

which depends on the existence of an equilibrium temperature T.

In nonequilibrium, the single temperature T is not defined. Two approaches for

finding the emission coefficient are possible. A quasi-equilibrium or excitation tem-

perature appropriate to each radiative transition can be calculated, from which indi-

vidual contributions to the emission can be obtained. This is the approach adopted

in the NEQAIR code [20]. Alternately, expressions for the emission coefficient can

be found for nonequilibrium from considerations of detailed balancing. In principle.
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thesetwo approachesshould lead to the sameresult. However,the definition of an

excitation temperature for use in the first approach is very sensitive to predicted

nonequilibrium energy level populations that dependon rate data with significant

uncertainties.An excitation temperatureis definedby assumingthat a Boltzmann or

Sahaequilibrium existsbetweenthe upperandlower levelpopulationsfor atransition.

For somenonequilibrium population distributions negativeexcitation temperatures

can be computed. For bound-freetransitions, for example,solving Saha'sequation

for T gives:

I-E 
Tax k In= ,, (3.50)

If the nonequilibrium population of level n is small the argument of the logarithm may

be less than one (the function f(Te) in this equation is a combination of partition func-

tions), resulting in a negative excitation temperature. Such negative temperatures

have no physical meaning and therefore require that some justification be developed

if they are to be used. The detailed balancing approach avoids this difficulty and is

therefore employed in LORAN. The necessary expressions for the emission coefficients

of the various radiative transitions are developed below.

3.2.1 Atomic Mechanisms

Bound-Bound Transitions

The radiative emission from an atomic line is given by: [6]

je = _,_ hu_a A_,I (3.51)
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where ,4_¢ is the Einstein coefficient for spontaneous emission of the transition from

the upper atomic energy level u to the lower level l. Detailed balancing relates .4_

to the absorption oscillator strength fh, as follows:

Srr2e2 gi
- u_fu, (:3.52)

Aa, mc 3 g_

Combining these two equations leads to the spectral emission coefficient for bound-

bound atomic transitions. The line shape b is the same as that for absorption.

2robe _ gt 3

3,,_ - rnc 3 gu u_.ffh, Y.,b(t,,, N,, "It, T,...)
(3.53)

Bound-Free Transitions

Bound-free emission results from the capture of a free electron into an ion.

cross section for this process is given by Zel'dovich and Raizer: [6]

The

128r¢ 4 Z4e 10

a_ = 3V_ rncah4v2n3u (3.54)

where v is the initial speed of the captured electron. The number nc of such captures

into the nth energy level for electrons with speeds between v and v + dv per unit

volume per unit time is

nc -- N+Nef(v)dv v o'c,_ (3.55)

The electron speeds are distributed according to the distribution function f(v) which

is assumed to be a Maxwell distribution in equilibrium at the electron translational

temperature T¢. The energy emitted, huut, where the subscript u now denotes the
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freestate, is givenby the sumof the initial kinetic energyof the electronand the net

energyrequiredto reionizeit from the final energylevel I.

r/lV 2

hu_a - 2 + (I- Et) (3.56)

I is the ground state ionization potential. El is the energy of the bound level, mea-

sured from the ground atomic state. This equation is solved for v _ and substituted

to eliminate v in favor of tile frequency u in Eqs. 3.54 and 3.55.

Combining all these pieces, the emission coefficient for bound-free transitions is

found from:

1

final levels 1

The complete expression is

J_' = 3v'_ rn2cah 2N+'¥_ _ ,_, -k_I'] ) (3.58)

The lower limit on the summation corresponds to capture of a zero energy electron.

n_n is determined for each frequency by setting v to zero in Eq. 3.56. The upper

limit is determined by ionization of the atom.

Free-Free Transitions

Free-free transitions are a special case in nonequilibrium because they involve only

free electrons. Since electrons are assumed to equilibrate rapidly to some temperature

T_, Kirchhoff's law and the development of the emission coefficient lead to the same

result.

8 ( 27r )l/2Z2e6J_" = -3 3mkTe rnca N+i_exp(-hu/kT_) (3.59)
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3.2.2 Molecular Mechanisms

A "smeared band" expression can be developed for the molecular emission coeffi-

cient by a process parallel to that for absorption. The total emission in a rotational

line, J_l, is obtained from the Einstein coefficient for spontaneous emission:

gel = :\_,A,,_hu_,l (3.60)

The emission intensity at a particular frequency is obtained by dividing by the solid

angle and introducing the line shape function, F(u).

N=A_thu_z

J'-' = 4rr F(v) (3.61)

Substituting Eq. 3.20 for the Einstein coefficient, this becomes

167r3 4 D 2 F(u) (3.62)
J_,,, = :Vu-"_-c2 V_,* _tSA qv',,,' Pj"J'

To obtain the "smeared band" result, this expression must first be summed over jl

and the average frequency Ys_..4_ introduced. Using the summation rule for p.tuj_

this gives

Proceeding in parallel to the development for absorption, the sum over v I is now

carried out.

J:A Ns_j_ 16_r3 2 F(u)_ -4= qvuv, uBv, avl, a_"y" '-_ DdBA
vl

(3.64)

where again the frequency remains inside this summation for accuracy. The average

emission coefficient for a single rotational line is now obtained using the mean value
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is:

where Au is the width of the line.

This equation can now be solved for the rotationally averaged emission coefficient.

The complete "smeared band" emission coefficient is then obtained by carrying out

the summations over the final rotational and vibrational levels, J_ and v". The result

-_ 16;raD_ F4 .a'_' Bvuju

v- v l ju

As in the case for absorption, the infinite sums are truncated by the occurrence of

dissociation.

The average frequency, 7B,_=,A_, in Eq. 3.66 is the same as that for absorption,

and is given by gqs. 3.44 and 3.45 for non-2 and Z transitions, respectively. The

average line spacing is also the same, and is given by the expression in Eq. 3.37 with

the rotational quantum number expressed in terms of the wave number according to

Eq. 3.38. The final term in the emission coefficient, the nonequilibrium upper level

population, is found from the expression:

NB_.j. = NB exp (-E_./kT_) ga. exp (-Ej./kTr) (:t.67)

where the vibrational and rotational energies are given as a function of wave number

by Eqs. 3.10 and 3.30, evaluated for the upper energy level, and the electronic level

population, NB, is obtained from the QSS method. The evaluation of the partition

functions was discussed in the section on absorption.
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Substituting all theseexpressionsin theemissioncoefficient,Eq. 3.66,the "'smeared

band" result is obtained:

_ 167taD2 _-_ ,_ -4
]-_uABe -- _ elBA u'* vL qv=v_ tJBv"' AvL

OG

xB exp 2Ju+ 1
jll

Av,,_,/ B,,,, B,_t

/kr,)
,.2 A,,.,,, (B,,,,- B,_,) 2,M e

(3.65)

Again the approximation 2J _ + 1 _ 2J _ is used inside the summation over J=, to be

consistent with the level of accuracy of the result.

3.3 Induced Emission

The above expressions for the emission coefficient do not include all the radiation

emitted by the medium. Stimulated or induced emission also occurs due to the

presence of photons. This emission is proportional to the radiative intensity, I,. and

Theis therefore commonly included as a correction to the absorption coefficient.

induced emission is given by:

C 2

" "_I (3.69)
]_ = ]_2hu3 ,"

In equilibrium the intensity, Iv, in this equation becomes the Planck black body

function, and the result of Eq. 3.47 is obtained. The absorption coefficient corrected

for induced emission can then be identified in equilibrium from Eq. 3.47 as

x', = ^-_(s)(1 -exp(-hu/kT)) (3.70)
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In nonequilibrium, the intensity cannotbe replacedwith the Planckfunction. In-

stead,the inducedemissioncoefficient of Eq. 3.69 must be substituted in the transport

equation, along with the coefficients for spontaneous emission and induced absorption.

The transport equation, Eq. 2.4, then becomes:

OI,,(s, fi, t)
+ _(s)I_(s, (_, t)= j_(s, t) + j'_(s, t) (3.71)

Os

where j_ is the spontaneous emission coefficient. Substituting Eq. 3.69 and gathering

terms containing I, then allows the definition of a corrected absorption coefficient

equal to the factor multiplying I,. The result is:

¢2

_ = x_, -j,-2hua
(3.79 )

The corrected absorption coefficient may be negative in nonequilibrium. This fact

must be carefully considered when developing any solution algorithm for radiative

transport in nonequilibrium problems.

Negative values of x', occur when the nonequilibrium populations are such that

the second term on the right-hand-side of Eq. 3.72 is larger than the first term.

Physically, this means that the upper energy level of a transition or transitions is

overpopulated relative to the lower energy level. Such a population inversion can

occur in a nonequilibrium boundary layer, for instance, when the higher energy levels

are still populated according to the temperature and chemistry of the inviscid shock

layer. Because of the u -a term appearing in Eq. 3.72, negative values of n'_ tend to

occur at the low energy end of the spectrum (see Fig. 5.3).
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4 Transport Theory

Solving the equation of radiative transport (Eq. 2.4) in a tractable computation

requires a number of approximations. It is not possible to consider an infinite number

of frequencies or an infinite number of directions. Assumptions commonly made are a

step-wise variation of radiation properties over part or all of the frequency spectrum,

and a one-dimensional variation of the gas properties.

The first assumption may be acceptable in many situations, but must be used

cautiously in nonequilibrium. The absorption coefficient in nonequilibrium cannot

be found simply from temperature and equilibrium composition but depends on the

population of excited states, and hence the chemical and excitation kinetics. This

introduces a number of new variables and makes the design of a step absorption

coefficient difficult. Some method of selecting appropriate frequencies at which to

compute the radiative properties must be devised. This problem will be discussed in

Ch. 5.

The second assumption of one-dimensional property variation should be nearly

valid in the stagnation region of flows over blunt bodies. However, the results shown

in Figs. 6b and 11 of Candler [4] suggest that even near the stagnation point this

approximation may be in error. The assumption certainly introduces considerable

error in the radiative flux at corners, and is not at all valid in the wake region of

vehicles such as the proposed ASTV. Such wake flows are of great interest, because of
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the desireto placeunshieldedpayloadsin the leeof thesevehiclesfor orbit transfer.

4.1 Flowfield Coupling

Including gas radiation effects in a thermochemical nonequilibrium flowfield cal-

culation means including the coupling between the fluid dynamics and the radiation.

The coupling occurs because of the radiative flux term V" qR (denoted Qr=a by Gnoffo

[69]) which appears in the total and vibrational-electronic energy conservation equa-

tions. In the tangent slab approximation, the divergence of the radiative flux reduces

to simply the normal derivative of qR. The appropriate term is obtained from the

radiative transport solution as discussed below for each solution method considered.

4.2 Plane-Parallel Medium

A common approximation for solving the radiative heat transfer equation is to

assume that the medium through which the radiation travels varies in only one direc-

tion. This is often a reasonable assumption in the stagnation region of a flowfield, as

well as in other geometries which are of interest for radiant heating. In this situation

the path variable s can be replaced by the Cartesian coordinate g using the chain

rule:

O 0 dx 0 dg 0 dz 0 dg
-- = ----+ ----+ ---- _ ---- (4,1)
Os O.r ds Oy ds Oz ds by ds
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Figure 4.1. Shock Layer Geometry for Plane-Parallel Approximation

For a shock layer geometry, if both s and y are taken along the surface normal direction

as shown in Fig. 4.1 then

0 d
_ (4,2)

Os dy

Equation 2.4 then becomes

dI_(y,t)

dy
+ x'.(y)I.(y, t) = j:(y, t) (4.3)

This is the equation of radiative transfer along the y-axis in a plane-parallel medium

under conditions of nonequilibrium.

4.2.1 Transparent Gas

A transparent gas is one in which the absorption coefficient is assumed zero. In

this case, Eq. 4.3 can be further simplified to obtain:

dI_(y, t)

dy
= j_,(y, t) (4.4)

This equation can easily be integrated to find

g
l_(g, t) = j:(y, t) dy

o

(4.5)
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For a solution over a flowfield grid, in which the emission coefficient is known at a

number of discrete points, this equation can be solved by any numerical quadrature

method. For a transparent gas, the radiative flux qn can be found simply by multi-

plying the intensity by 2rr. The divergence of q,n, needed for coupling to a flowfield.

can be obtained by numerical differentiation. Despite the assumption that the gas

does not absorb radiation, this term will be nonzero due to emission from the gas.

4.2.2 Absorbing Gas

For an absorbing gas Eq. 4.3 can be integrated formally to obtain an expression

for the radiative intensity for any location y. This has been done in equilibrium

for instance by Ozisik [21, p. 267]. It is convenient to split the intensity into two

components: one directed along +y, denoted I +, and the other along -y, denoted

Ij. Ozisik's equations can be adapted to the nonequilibrium situation by recognizing

that the source function, S_, in a non-scattering nonequilibrium gas becomes j_/-' /_v"

The formal solution for these two components of the radiative intensity can then be

written for the nonequilibrium problem as:

,_ j_,(r;) -('_-_')dr'I_+(T_)= I_+(0)e-_ + _, ,_-, e _._ (4.6)

j,,,L. ,.,)_-(r_-r_},4_., (4.7).tO v 2e l ,j.I X e

d ?'u I""""_ C u,_ vI_-(r_) = Iy(ro_)e -(_°'-_ + %(r$)

where % is the optical variable defined for each frequency v as

y
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The r_ = 0 boundary is the vehicle surface, which is assumed to emit radiation

according to Planck's function at the wall temperature T.. A radiation equilibrium

wall temperature can be computed for this purpose, but in this analysis T_ is assumed

to be given. The r. = 7"o. boundary is the freestream gas ahead of the vehicle. The

radiative intensity emanating from the freestream is assumed to be zero. The second

equation therefore reduces to:

'e !

_o_ j_(r,) e_i,;_,_)dr, (4.9)= , ,

Nicolet [24] assumed a log-linear variation of properties to solve these equations.

This formulation does not accommodate negative values of _'., the absorption coef-

ficient corrected for induced emission, which can occur in nonequilibrium, Nicolet's

transport algorithm can therefore not be used here. As in the transparent gas case.

any numerical quadrature method can be used to obtain the radiative intensity dis-

tribution along the body normal, but it must allow for negative _'..

To obtain the radiative flux in an absorbing, plane parallel medium it is easy to

show that the above equations apply with the simple replacement of r. by 2r_ and

the addition of a factor of n'. The net radiative flux is then given by

q_(r_) = rr {I+. (O)e-_" + fo "_

"e f

a.(r;) ,
e d(2r.) - /

,¢,,(,,-,) .,,.,,
j'.(r') -2(,;-,_ . , _
., , e d(2r_) 1

(4.1o)

The divergence of the radiative flux is obtained by differentiating this equation with
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respectto 9, then integrating over the complete spectral range. The result is:

{ [ /0 ' ]1Oqn _m_x . , + -2_ 3.(r_) T_ j._(r,) e d(2r_) du
= I_ (0)e - 2_ + ., lr-------7-

(4.tl)

where r_ is a function of 9. For a solution including all the radiative energy, Umj, is

zero and Umax is infinity. In practice, finite limits on the spectral integration will be

required. Most gas radiation in shock layers in air occurs at energies below 16.5 eV.

An alternate upper limit at 6.2 eV includes only the visible and infrared portions of

the spectrum. This range of energies is easier to measure experimentally and includes

minimal self-absorption. The lower limit is often set around 0.3 eV because a zero

energy photon causes a singularity in the free-free absorption coefficient (Eq. 3.9).

The singularity arises because additional quantum mechanical considerations must

be included at very low energies. The radiative energy omitted by ignoring these low

energies is minimal.

4.3 Multi-Dimensional Medium

Since an exact solution of the radiative transport equations in multi-dimensional

media is not feasible, an approximate method is sought. Such a method should intro-

duce considerable simplifications to the governing equations in keeping with the stated

objective of providing a relatively fast solution. Numerous approximate methods are

available in the literature. A brief summary was provided in the topical review in

Ch. 2. The best-developed of these methods are the moment methods, which reduce
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the problemfrom a solutionof integro-differentialequationsto a solution of simpler

ordinary differential equations. Many of thesemethods havebeendevelopedspecifi-

cally for one-dimensionalradiative transport. Sparrowand Cess[70,Sec. 7-9]caution

that the extensionto three dimensionsis open to questionand must be made with

caution. They also show, however, that the moment method reduces to the correct

expressions in the limit of optically thin or optically thick gases and suggest that it

should therefore be of reasonable accuracy for all values of optical thickness. Modest

has modified the differential approximation to make it even more accurate for small

optical depths and generalized it for the three-dimensional case. His method gives

results of excellent accuracy for all optical conditions [27]. It is adapted below for the

current non-gray, nonscattering, and nonequilibrium flow.

As previously mentioned, the source function in a nonequilibrium, nonscattering

medium is

S_- - --j_ (4.12)

The definitions of the incident intensity and flux are repeated here for convenience:

G.(r-) = f. I.(F, (_)dw (4.13)

= fa,_ I.(F, fi)(_dw (4.14)

In what follows the R subscript on q'_a will be dropped. The intensity is now divided

into two separate contributions: one due to the emission from the medium, I,_: and

the other traceable to the wall emission, I_: I(Z, fl) = Z_(Z, fi) + Im(Z. fl). The

incident intensity and flux will then also have two components: G = G_ + G,_ and
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(= q_ + O'_. While the intensity attributable to the wall may be highly directional.

that emanating in the medium should vary quite smoothly. This portion is therefore

assumed to be given by the P-1 approximation, which is the simplest form of the

moment method. In this case, the medium intensity can be expressed as

Xm _ _(Gm + 3¢_ • fi) (*.1.5)

This expression is unchanged from the work of Modest [27]. The equation governing

the medium intensity then becomes

v.(fiL..) = j2 - fi) (4.16)

where the nongray, nonscattering, nonequilibrium nature of the gas has been ac-

counted for. Taking the zeroth and first moments of this equation and integrating

over 4_" steradians yields the applicable governing equations for G. and _ of the

medium:

-e !

V "q.= = 4rr3. - x.G.,,, (4.17)

GU m ! .._= -3x.q.,,, (_.18)

The details of the numerical solution to these equations are given in Appendix B.

To obtain the divergence of the radiative heat flux, which is required to couple

the solution with the flowfield, the contribution to g from the wails must also be

considered. This is obtained from the following integral:

P

__ _ / -q mT v ^

71",,]4
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where the wall radiosity,/5',, is given by the sum of emission at the wall temperature

T_, and reflection of radiation emanating from other wall surfaces. In Modest's

analysis, the wall reflection is assumed to be diffuse. The treatment of specularly

reflecting wall surfaces adds considerably to the complexity of the problem and will

not be addressed here. In any case, for a forebody flowfield the wall surface is convex

so that no reflection of radiation emitted by the wall can occur. Then the radiosity

is simply the emission from the wall:

(4.20)

This contribution to the radiative flux must be computed for each grid cell in the

medium by integration over all the wall surface elements to which it has a line of

sight. If it is further assumed that the wall is cold, or that it makes a negligible

contribution, then _'_, _ 0, and only the medium contribution need be considered.

This approximation is not unreasonable for aeroassist flowfields, since heating rates

are relatively low in the upper atmosphere and the wall temperature will accordingly

be relatively low during much of the flight. In fact, at the maximum wall temperature

predicted for the Aeroassist Flight Experiment (AFE), the peak of the black body

emission spectrum occurs at about 0.75 eV. This temperature is close to the limit

achievable for reusable surfaces using Space Shuttle-type thermal protection system

tiles, and so is representative of the maximum wall temperature to be expected for

a non-ablating surface. For lower temperatures, the peak shifts to even lower ener-

gies. In this low energy spectral region the gas is quite transparent to radiation (see
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Fig. B.1) so the wall can havelittle effect on the divergence of the radiative flux. In

that case, V ' _R -_ V " qT_ and is obtained by' integrating Eq. 4.17 over frequency.

Note that unlike the plane-parallel medium, numerical differentiation is not required

here.

Boundary conditions in the multi-dimensional case are less obvious than for the

plane parallel approximation. It may again be assumed that the radiative intensity

emitted in the freestream is zero.

symmetries are generally exploited.

Even in a three-dimensional flowfield, however.

This means that some grid boundaries will be

symmetry planes. Others will be outflow boundaries. Symmetry planes can be treated

with reflecting boundary conditions, but the treatment of outflow boundaries is ill-

defined. The conditions of the gas are not known beyond such boundaries, though it

is expected to continue radiating for some finite distance for most flight conditions of

interest. The treatment of outflow boundaries is discussed further in Sec. 6.2.1 and

Appendix B.

For the medium intensity, the vehicle surface is considered to be a cold wall, for

which Marshak's boundary condition [21] for the P-1 method is

2 -1 _._+a_ = 0 (4.21)

The flux, if any, impinging on a wall surface due to emission or reflection from other

wall surfaces must be obtained by an integration which considers the view factors of

the particular problem. When the wall is convex, this contribution is zero. The nu-

merical details of the treatment of the boundary conditions are given in Appendix B.
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5 Implementation

The implementation of the theory for radiation transitions and radiative transport

developed in the previous two chapters in a practical computer code requires some

additional work. The details of the process are described in this chapter.

5.1 Coding

The present method is implemented in the LORAN (Langley Optimized RAdia-

tive Nonequilibrium) code, which was developed using two existing codes as starting

points. The RAD/EQUIL program [33] was followed in developing some of the code

structure. It also is the source of part of the algorithm used to model atomic line

radiation. The quasi-steady-state (QSS) excitation portion of the NEQAIR program

[20] has been minimally adapted for use in LORAN.

LORAN is divided into four major sections: reading data and setting up proper-

ties which are constant for a calculation, calculating the nonequilibrium excitation.

evaluating the radiative properties, and solving the radiative transport problem.

5.1.1 Initial Setup

Data Input

To evaluate the expressionsfor absorption and emission obtained in Ch. 3 foreach

of the radiatingmechanisms, input values are required. Data are also required to

predict the nonequilibrium populations of the various bound energy levels. Flowfield
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data are required to definethe local gasconditions. Finally, program control inputs

are desirableto maximize the flexibility of the method without requiring constant

reprogrammingand recompiling. Theseshould allow the user to turn individual

radiating mechanismsor specieson or off to perform detailedstudiesof the radiation

spectrum. They shouldalsoprovide for selectionof options in the code(i.e. tangent

slab vs. a-D transport). These inputs are obtained from a variety of sources, as

discussed below. Most of the inputs are species properties and will not change unless

significantly different new data become available.

Flowfield Data

The information required about the gas conditions consists of the number densities

of each of the radiating species considered and temperatures for the several energy

modes. The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)

flowfield solver [71] is the source of the flowfield data used in developing this method.

It is an 11-species model which provides number densities for all the nitrogen/oxygen

radiating species of interest. LAURA currently incorporates a two-temperature model

for thermal nonequilibrium [72]. The rotational and heavy particle translational en-

ergy modes are assumed to be equilibrated, while the vibrational and electron trans-

lational energy modes are assumed to be in equilibrium with each other but not

necessarily with the other modes. This means that the separate T_ and T, carried in

the development of the absorption and emission coefficients are equal, as are Tr and

Tt. The distinction between these temperatures was maintained in LORAN, however,
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sothat eachcanbeusedif the separatetemperaturesbecomeavailablefrom LAURA

or another Computational Fluid Dynamics(CFD) code in the future. Somerecent

work [73] suggestsfurther that distinct vibrational temperaturesmay exist for each

molecularspecies.Shoulda CFD codeever includesuchdetail, minor modifications

to LORAN will allow theseindividual T_ values to be used.

An effort has been made to keep the input of the flowfield properties from LAURA

generic, so that with minor changes to a single subroutine LORAN can be interfaced

with a different CFD code.

Maximum Rotational Quantum Number

The radiative property data discussed above are read into the program first. As

part of this process, the maximum rotational quantum numbers are assessed using

the algorithm developed by Whiting (see Sec. 3.1.2). These values do not change in

the program.

Continuum Spectrum

The spectral location of all radiating transitions is determined from the set of

energy levels in the atoms and molecules appearing in the gas. This information can

be used to select a minimum set of spectral points for use in the radiation calculation.

Consider the bound-free continuum. The absorption coefficient for this mechanism

is a smooth function of frequency with discontinuities corresponding to the activa-

tion of additional energy levels. To resolve this spectrum, spectral points must be
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Figure 5.1. Example of Spectrum Optimization for Bound-Free Continuum

O0

placed within a very small interval on either side of each jump, as shown in Fig. 5.1.

However, this interval is much smaller than what is needed for the smooth portions

of the curve. RAD/EQUIL took advantage of this fact by allowing the user to input

a few spectral points to capture the jumps. In LORAN, this procedure is automated

and incorporated in the radiation calculation. For the particular set of atomic species

considered in a computation, a tailored atomic spectrum is generated to resolve the

active discontinuities, as the figure illustrates. This simplifies the inputs and elimi-

nates the chances of omitting a level. It also allows the atomic continuum calculation

to be performed on the minimum resolving array of spectral points.

As discussed in Ch. 3, the molecular radiation has been modeled here using the

"smeared band" approximation. In this approximation, the rotational structure is
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smoothed into an exponential variation. To resoh'e the resulting spectrum, spectral

points must be placed around each vibrational band head. A few points are sufficient

to capture the smoothed rotational variation within each such band. The resulting

structure is similar to the bound-free spectrum, though it is much more complicated

because the vibrational bands are far more numerous and often overlap each other.

These considerations have been used to develop a routine to choose an optimum

molecular spectrum for each input spectral range and set of active species.

For each active species, the vibrational band heads that occur in the spectral

range under study are computed from Eq. 3.36 with J = 0. An initial spectrum is

generated by resolving the band head and spacing nv points in the interval between

the zero rotational level (J = 0) and the maximum rotational level (J = Jm_). An

example for a major vibrational band of N + is given by the curve labeled "initial

spectrum" in Fig. 5.2. Note that the clustering of points along this curve results

from additional weaker bands which underlie this major band. Since the absorption

coefficient decreases rapidly for a given vibrational band (note the log scale in the

figure), this spectrum can be reduced. This is done by discarding points that describe

a vibrational band away from its band head (points required to resolve the jump are

kept), if they are within a given interval crit of another point. This procedure can

reduce the spectral array by nearly an order of magnitude. A second reduction can

be made by discarding any point which has a neighbor within a smaller interval

crit2. Applying these steps to the spectrum in Fig. 5.2 results in the optimized
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Figure 5.2. Example of Spectrum Optimization for a Vibrational Band

spectrum shown. Applying them to the entire set of vibrational bands, a spectrum

can be generated that resolves the molecular transitions using less than 2000 points

and that is optimized for whatever species and spectral range have been requested.

This calculation is computationally expensive, since it sifts through a large number

of possible spectral points to produce the optimized molecular spectrum, and it is

therefore only exercised once per run. The resulting spectrum is stored for all further

computations. Appropriate selection of the parameters nv, crit, and crit2 controls

the amount of detail included in the molecular spectrum and its size.

Once an optimized spectrum is obtained, the index of the first and last spec-

tral point for each vibrational band is determined. These indices simplify the logic

required in computing the molecular band radiation, and improve its efficiency.
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A few (about 50) points from the optimized molecular spectrum that resolve

strong vibrational transitions are identified and interleaved into the atomic continuum

spectrum discussed above. The resulting spectrum of about 150 points will be referred

to as the modified atomic spectrum. Its use is discussed in Sec. 5.1.4.

5.1.2 Nonequilibrium Excitation

To obtain the nonequilibrium electronic level populations for the atoms and molecules

in the flowfield, data on the rates of excitation and deexcitation of each level are re-

quired. Sources for this data are varied, but the rates presented are often uncertain

due to the experimental difficulties involved in their measurement. Park [20] has col-

lected a complete set of rates for nitrogen and oxygen species which has been adopted

here.

The nonequilibrium excitation calculation in the present method was taken from

Park's NEQAIR program. It consists of a QSS solution to the set of excitation rate

equations, in which it is assumed that the rate of change in a level's population is

small compared to the rate of transitions into and out of that level [67, Chapter 3].

This method is designed for use in situations where the amount of nonequilibrium is

"not too large". Its most serious weakness in the present application is that it does

not account for the history of the flow in areas of high gradients (boundary layer and

shock).

The excitation calculation depends on excitation rate data for the various energy

levels. This type of data is rather difficult to obtain and therefore has a significant
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levelof uncertainty. Park [3] cites this uncertainty as a factor of two, and asserts that

the impact on the excited state populations is negligible. Further verification of this

accuracy would be desirable in the future.

5.1.3 Radiation Properties

Bound-Bound Mechanisms

For bound-bound transitions the oscillator strengths f,,, line centers VCL and

Stark (half) half-widths 3s are needed. The National Bureau of Standards (NBS)

has published a large number of line centers and oscillator strengths [66], while Stark

(half) half-width information is available from Griem [6al,among others. In addition,

the energy levels and degeneracies of the upper and lower levels of the transitions can

be found in the NBS compilation.

In the RAD/EQUIL code, Nicolet approximated the so-called high series lines by

an integral. These lines have lower state quantum numbers of four or greater, and are

numerous and closely spaced at energies below 3.2 eV. Park treats each of these lines

individually in NEQAIR. In the present method, in order to reduce the number of

lines computed and therefore the run time, the high series lines were represented by

multiplet-averaged values. Data for these averaged lines were obtained from the NBS

tables, for transitions corresponding to Park's inputs. This approximation should

have minimal impact on the results, and yet allows the number of lines treated to be

reduced by more than half.

The line shape models for LORAN are taken from the development bv Nicolet
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[23] as implementedin the RAD/EQUIL code [33]. This includes natural, Doppler,

resonance, and Stark broadening of the atomic lines, as discussed in Ch. 3. Lorentz

or Doppler line shapes are selected depending which line width is larger. Each line is

resolved by a small number nppl (generally less than or about 15) of spectral points

that are distributed starting from the line center (see Fig. 3.1). The location of

the spectral point farthest from the line center is determined from the width of each

atomic line. In Nicolet's implementation the line width used to distribute these points

was an approximation to the maximum width in the gas layer so that all or most of

the energy in each line would be included. This approximate maximum width was

calculated at a location input by the user at which the maximum temperature was

expected.

For an application in which a complete flowfield is to be computed, the identifi-

cation of the occurrence of maximum line width presents some difficulties. Further,

since the line width may vary by orders of magnitude between various points in a

flowfield, the use of a spectrum geared to the largest width can result in significant

loss of accuracy. For these reasons, the routine which sets up the line frequency

spectrum (subroutine freq of RAD/EQUIL) has been modified to be applied to every

point in the flowfield. This results in the specification of a local set of spectral points

based on the local line width. These disparate frequency spectra are then reconciled

to generate a single atomic line spectrum. This process results in the selection of

a set of spectral points capturing the energy in a line at its broadest, but involving
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detailed spectral information at eachgrid point. This techniqueallows satisfactory

resolution of the atomic lines, without requiring an excessiveamount of storage or

computation.

An additional change made to Nicolet's method arises because Stark broadening

is not always the dominant effect on line width. In the original RAD/EQUIL, the

point distribution logic in subroutine freq considered only the Stark line width. In

the present model, the largest of the Doppler and Lorentz (Stark effect) line widths

is used. While this is a small change, it should result in more complete coverage of

the atomic line radiation in the present model.

The RAD/EQUIL method has also been modified to use nonequilibrium excited

state populations and electron temperature, where appropriate. The Doppler line

width remains a function of heavy particle temperature, since it arises from the ther-

mal motion of the atoms themselves.

Bound-Free Mechanisms

Computing the radiation from atomic mechanisms requires knowledge of the en-

ergy levels of each atomic species. The large number of electronic energy levels in

Eq. 3.8 must be modeled by a manageable set of inputs. To reduce book-keeping

and complexity, a common practice is to group neighboring energy levels into one.

with an appropriate overall degeneracy. This practice has been adopted here. The

grouped levels from Park's QSS method [20] are used for nitrogen and oxygen atoms

(twenty-two levels for atomic nitrogen, nineteen levels for atomic oxygen). The re-
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quired valuesfor the principal quantum number n and the energy level E,_ for each

of these levels is input.

The bound-free photoionization edge structure is produced by the activation of

each level in the summation term of Eq. (i.8. This requires determining the lowest

accessible bound energy level, n', for each spectral point in the atomic continuum

spectrum. The ground state cross sections are invoked as constants to avoid the

errors arising from the hydrogenic model, as discussed in Ch. 3. Each of the atomic

energy levels is treated individually in the bound-free calculation, but since these are

grouped levels many more energy levels are in fact approximately included.

Pree-Free Mechanisms

LORAN considers only the radiation produced by an electron slowed by the pres-

ence of an atomic ion. The free-free radiation produced by the proximity of a neutral

atom or a molecule is considered negligible. The free-free contribution is computed on

the same spectrum as the bound-free radiation. The resolution thus obtained is more

than sufficient, and allows the two atomic continuum processes to be easily combined.

Molecular Mechanisms

To predict the molecular band radiation, spectroscopic constants describing the

distribution of rotational and vibrational energy levels according to Eqs. 3.11 and 3.10

must be provided. These can be found in a number of sources, such as Herzberg [6,5],

Bond et al. [74], and many others. These sources also provide the necessary informa-
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tion on the electronicenergy levelsand energy'leveldegeneraciesin molecules.The

intensity of radiation dependson the Frank-Condonfactors qv_ and the electronic

transition moments DeIBA. Data on these quantities may be found in many often

contradictory sources. The complete set of molecular inputs collected by Park for his

NEQAIR code [2.0] has been adopted here for simplicity.

The molecular band radiation is computed using the optimized molecular spec-

trum whose determination was discussed in Sec. ,5.1.1. The expressions for the emis-

sion and absorption coefficients developed in Ch. 3 have many terms in common.

Advantage is taken of this fact to reduce the computation time required. Since the

molecular calculation remains one of the more expensive parts of the radiation calcu-

lation, care was taken in programming this particular mechanism to ensure that the

advantages of vectorization are exploited to the extent possible.

5.1.4 Radiative Transport

Two distinct methods to compute radiative transport were developed in Ch. 4,

with and without the tangent slab approximation. Both employ an approximate

treatment of atomic lines based on the method of RAD/EQUIL. A single mean value

of the continuum (atomic continuum plus molecular band) absorption and emission

coefficient is computed for each line and added to the detailed absorption and emission

coefficients calculated at the nppl points describing the line. These mean _'alues are

obtained by interpolating the information in the optimized continuum spectra, thus

avoiding an expensive computation at each of the nppl spectral points describing
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each line. Since each atomic line coversonly a very small part of the spectrum

(seefor instanceFig. 13.1),this approximationshould introduce minimal inaccuracy.

Radiative transport is then computedat all nppl spectral points describing each line.

This detailed result can be integrated over frequency to provide an average flux for

each line if a concise presentation is desired, or it can be presented in full detail.

The molecular spectrum can be averaged to obtain values at each point in the

much smaller modified atomic continuum spectrum, so that the number of spectral

points for which transport must be calculated is significantly reduced. Since these

approximate results are based on a detailed molecular spectrum of both emission and

absorption, the prediction of molecular radiation transport should be quite accurate,

This averaging technique has been used for the full flowfield solutions reported in

Ch. 6 to reduce the computation time. For those cases in which only the stagnation

line is computed, the complete optimized molecular spectrum is used in the transport

calculation.

Tangent Slab

The numerical integration of the transport equation simplified for the case of one-

dimensional radiation (Eq. 4.3) is straightforward, with one exception. The method

used by Nicolet in the RAD/EQUIL code assumes a log-linear variation of the absorp-

tion coefficient between grid points [24]. As mentioned in Sec. 3.3, under nonequi-

librium conditions there is no longer any assurance that the absorption coefficient

corrected for induced emission, _'_, will be positive. The log-linear variation assumed



by Nicolet cannot handle a negative _'_.

betweengrid points is usedinstead.

6,5

For this work, a simple linear variation

Multi-Dimensional Transport

The detailsof the modifieddifferential approximation usedto solvethe radiative

transport equation for multi-dimensionalmediaare discussedin App. B, along with

' is not positive, numerical instabilities haverelated numerical considerations. When _,

been observed in this method. Further work is needed to determine whether these

instabilities can be removed. For now, spectral points at which these instabilities

.!

occur are ignored. Figure 5.3 is a plot of the number of occurrences of a negative s,

in a test flowfield at each point in the radiation spectrum. It shows that significant

' only occur for a few points in the love energy end of thenumbers of negative _,

spectrum. The effect on predictions of wall radiative flux from ignoring these few

spectral points will be quite small (see Ch. 6).

It should also be pointed out that the occurrence of these negative values of _',

is controlled by the nonequilibrium excitation calculation. As mentioned before, this

calculation contains significant uncertainties. An example of a population distribution

at a point with negative x', is shown in Fig. 5.4 (an equilibrium distribution would

appear as a straight line in this figure). This population distribution is quite odd, with

neighboring energy levels having populations different by many orders of magnitude.

and may be due to uncertainties in excitation rates. It is possible, therefore, that

" values result from uncertainties in the excitationat least some of the negative _;,
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Figure 5.3. Occurrence of Negative _ in a Test Flowfield

calculation. Ignoring these spectral points may therefore introduce less error than

including them.

5.2 Computational Optimization

Obtaining radiation predictions for complete flowfields, or coupling radiation and

flowfield solutions, requires that the radiation calculations be carried out many times.

In order to make this practical and to minimize the cost, it is desirable to optimize

the radiation program, and to determine the minimum set of calculations which will

provide an accurate radiation prediction. Methods of achieving this are discussed

below.
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5.2.1 Radiation Calculation

Parametric studies were conducted to determine the spectral resolution required

for acceptable accuracy in the predicted radiation. Variables whose effect was studied

include ha, the number of points allowed in the atomic continuum spectrum; r_ppl,

the number of points resolving an atomic line; and the several variables which control

the generation of the spectrum for molecular band radiation (nv, crit, crit2).

Tables 5.1-5.3 summarize the findings of this optimization process. The baseline

against which the flux calculation is judged (first line of each table) is a detailed spec-

trum case with na =1500, nppl =15, nv =10, crit =0.00825 eV, and crit2 =0.0011 eV.

While uncertainties in the radiation calculation mean that this prediction is not nec-

essarily right, such a detailed spectrum does provide the best result possible. The run
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timesarejudged againsta casewith na =100 and all other values unchanged (second

line of each table). The transport time appearing in column 4 is the time required

for tangent slab transport. Relative time savings for the modified differential approx-

imation should be similar. Alternate values tested for these parameters are given in

the first column of the tables. The designations C1 and C2 refer to combinations of

the alternate values as follows: C1 has na =75, nppl =11, nv =8, crit =0.0165 eV.

and crit2 unchanged; C2 is the same as C1 except na =100. Three flight conditions

identified as Cases A, B, and C, were studied to obtain results over a wide range of

nonequilibrium conditions. These cases are described in further detail in Ch. 6 and

7.

As shown in Tables 5.1-5.3, the prediction of the radiative flux is affected by less

than 5 percent for each set of parameters, except for two occurrences in Case C (see

column 2). These are both attributable to setting na =75. The potential savings in

computational time are considerable. Based on these results, it is determined that

the parameter set denoted C2 (ha =100, nppl =ll, nv =8, crit =0.0165 eV, and

crit2 =0.0011 eV) is appropriate for use in the radiation model. Increasing crit2 in

line with the changes in the other parameters was found to have no effect, so results

are not presented here.

5.2.2 Excitation Calculation

The last column in Tables 5.1-5.3 shows the fraction of CPU time used by the

radiation and transport calculations. The remainder is required to obtain the nonequi-
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Table 5.1. Computational Optimization - FIRE II at 1631sec

Case

Baseline

na =100

nppl =11

na =75

nO --8

crit * 2

C1

C2

Flux

0.508

+0.8%

+0.9%

+O.8%

+1.4%

+0.8%

+1.4%

+1.4%

CPU time

for Radiation

6.116

3.561

-13.5%

-1.6%

-0.3%

-0.9%

-14.9%

-26.6%

CPU time

for Transport

1.735

0.895

-29.7%

-2.1%

-0.8%

-o.7%

-30.8%

-29.5%

CPU

Fraction

0.50

0.37

0.33

0.36

0.37

0.37

0.32

0.30

Table 5.2. Computational Optimization - FIRE II at 1634 sec

C ase

Baseline

na =100

nppl =11
na =75

nV =8

cvit , 2

C1

C2

Flux

22.50

+2.1%

+3.6%

+2.5%
+2.6%

+2.1%
+4.5%

+4.1%

CPU time

for Radiation

10.843

6.326

-13.0%

-1.1%

+o.1%
-0.6%

-14.8%

-26.0%

CPU time

for Transport

3.059

1.714

-29.3%

-1.6%

-0.1%

-0.8%

-30.7%

-29.3%

CPU

Fraction

0.69

0.57

0.52

0.56

0.57

0.57

0.52

0.49

Table 5.3. Computational Optimization - FIRE II at 1637.5 sec

Case

Baseline

na =100

nppl =11

na =75

/213 =8

crit • 2

C1

C2

Flux

292.9

+1.5%

+1.9%

+6.1%
+1.2%

+1.6%

+6.3%

+1.7%

CPU time

for Radiation

10.061

5.754

-12.1%

-1.2%
-o.1%
-o.7%
-14.1%

-24.5Vc

CPU time

for Transport

2.913

1.617

-28.9%

-1.1%

+o.1%
+0.2%
-30.2%

-28.8%

CPU

Fraction

0.73

0.60

0.56

0.60

0.60

0.60

0.55

0.53
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librium excitedstate populations,and is a significant fraction of the total. The QSS

algorithm usedto perform this calculation wasobtained fi'om NEQAIR and is used

as a black box. While important savingsmay be possiblein this algorithm, no at-

tempt has beenmade to achievethem. It is clear that this is a limiting factor in

the efficiencyof the radiation prediction. It is interesting,but not surprising, to note

that the excitation calculation takes longer for conditions which are further out of

equilibrium.

5.2.3 Radiation Subgrid

Calculating radiative properties at every point on a flowfield grid is often wasteful.

The absorption and emission coefficients only change significantly in regions where the

temperatures or species concentrations have large gradients. Bolz [30] developed an

algorithm to automatically select a subset of grid points for the radiation calculation.

He defines a weighting function which can be adapted to the nonequilibrium situation

as

Zk "- k"_ Z WN

i=l L Yi, max

TI I IJ IT'], IT 'I ICRI,
+ Wr, ]Ti 1,,_,_ + Wro T' + WT. + Wqa .

(5.1)

The ' in these equations denotes the partial derivative with respect to r/, the normal

to the wall. The average derivative of the species number densities is

8

= I-v,jl (.5.2)
j=l
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Figure 5.5. Example of Radiation Subgrid Selection

for s chemical species. Radiation is then computed for kR < k grid points at equal

intervals of Zk. An example of such a grid is given in Fig. 5.5. Though weighting

factors are included for each term in Zk there is no obvious reason to emphasize the

gradient in one variable more than that of another. These factors are therefore all

set equal to one. This algorithm has been implemented in LORAN as an option. It

can be invoked when reducing the computational time is important. If a separate

rotational temperature is available, or if individual species vibrational temperatures

are computed, additional terms can be added to the function Zk.

The subgrid algorithm has been assessed using the three nonequilibrium test cases

of Ch. 7. The effects are summarized in Table 5.4. The subgrid results (columns 3

and 4) were obtained using the optimized C2 set of parameters discussed in Sec. 5.2.
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Table 5.4. Effect of Radiation Subgrid Algorithm

Case

A

B

C

Detail spectrum

All grid points

0.508

22.50

292.9

20 grid points

-1.4%

+10.7%

+3.9%

15 grid points

+6.4%

+14.2%

+2.9%

while the detailed spectrum result (column 2) uses the Baseline parameter set to

establish a reference heat flux (this is again a grid refinement test rather than an

accuracy check, since even the detailed spectrum result relies on uncertain radiation

and excitation properties). The CPU time required to compute the excitation and

radiation for a given case is a nearly linear function of the number of grid points, so

the time savings can easily be assessed.

For each of the three cases using twenty grid points (out of 64 in the flowfield

grid) selected with the modified Bolz algorithm provides radiative heat flux predic-

tions within about ten percent of the reference result, even including the spectral

approximations introduced by the use of the C2 data set. A subgrid of this size is

therefore considered adequate, confirming Bolz' conclusions.

In an axisymmetric or 3-D shock layer flowfield this algorithm can be applied to

each normal ray of grid points. This results in a "patchwork" grid, in which cell

shapes are more irregular than those in a standard LAURA grid. In an extreme case,

such a grid may destabilize the transport solution. In most cases, however, optimizing
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Along Each Normal Line

the subgrid along each normal ray may be acceptable and even beneficial. Figure 5.6

presents an example of such a grid for a test flowfield. The irregularities appearing

in the mesh are in fact quite minor.

To further reduce the required computational time, every other normal line of the

flowfield grid might be skipped in the radiation calculation. The required properties

can easily be interpolated for the skipped normal lines.

5.3 Flowfield Coupling

The divergence of the radiative flux, V • q'R, which appears in the energy conser-

vation equations to couple radiation and fluid dynamic phenomena, is computed for
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eachpoint in the flowfield by LORAN, either directly or by interpolation of results

on a radiation subgrid. Coupling can be accomplished by alternatively computing

the flowfield with LAURA and the radiative flux term with LORAN. Because the

computation of the radiation requires up to three orders of magnitude more compu-

tational time than one iteration of the fluid dynamics computation, however, it is

advantageous to utilize a multitasking strategy. Multiple tasks are assigned to the

radiation calculation while a single task computes the nonequilibrium flowfield. The

computational domain is partitioned into three to seven subdomains (depending on

the number of processors available), each assigned to a processor for calculation of

the radiation field. When run asynchronously with the single flowfield task, the mul-

tiple radiation tasks allow the flowfield equations access to the latest radiative flux

terms in shared memory (multiple LAURA iterations still occur during a single radi-

ation update). This asynchronous strategy is an efficient use of a multiple processor

machine since no processor remains idle waiting for another task. Preliminary com-

putational experiments indicate no instabilities in this approach. The effectiveness of

asynchronous multitasking schemes using LAURA is further discussed in Ref. [75].

As a practical matter, it is often more efficient to first obtain a converged flowfield

solution using LAURA, then "turn on" radiation and converge the coupled flowfield.

If the radiation is only a small perturbation to the flowfield this second convergence

may require only a few additional LAURA iterations. If there are strong radiation

effects then converging the perturbed flowfield will require many additional iterations.



Though the necessarycode to couple the LAURA and LORAN solutions has

beengenerated,only a very few preliminary resultshave so far beenobtained with

flowfieldcoupling. The casesrun to date confirm that this couplingcan bedone, but

no significant effectshaveyet beenobservedfor the casessofar examined. Coupled

results are thereforenot included in Ch. 6.
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6 Results and Discussion

Gas radiation is a complex phenomenon, so that true verification of a radiation

model requires checking it against a large number of flight and ground-based ex-

periments covering a wide range of conditions. Only a few such measurements are

currently available. Representative results for these cases are shown here as an initial

test of the method. All nonequilibrium flowfields used in the verification were gener-

ated by the LAURA code of Gnoffo [71], in order to eliminate differences caused by

flowfield modeling. As discussed in the following chapter, the selection of models in

a flowfield code can have a large impact on the predicted radiation.

6.1

6.1.1

Comparison to Experiment

Ground-Based Data: AVCO Shock Tube

One of the classic radiation measurements is that in the AVCO shock tube [43].

Using the gas conditions suggested by Park [72], a predicted spectrum for the emission

intensity has been obtained for the peak radiation point, and is shown in Fig. 6.1. This

spectrum can be compared to Figure 5 of the just-cited reference, which is reproduced

here in Fig. 6.2 and shows the measured spectrum compared to a prediction obtained

by NEQAIR. The agreement between the measured data and the present result is no

worse than that shown by NEQAIR and may actually be a little better. The atomic

lines appearing in Fig. 6.1 are multiplet-averaged, and so should exhibit only a gross



agreementwith the NEQAIR prediction of Fig. 6.2, as is observed.

It isclear from Fig. 6.2that the measurementsobtained in the AVCO experiments

had a lot of scatter. It is difficult, therefore, to do more than note the general

agreementbetweenthe experimental resultsand the prediction. Both predictions do

havesignificantdifferencesfrom the AVCO data in a fewspectralregions(particularly

below0.3 #m). Thesemay be attributable either to contaminationof the shock tube

or to inexact specificationof the gasconditions.

6.1.2 Flight Data: Project FIRE

The FIRE flight project of the mid-1960's consisted of two flights simulating reen-

try of an Apollo type vehicle. The first flight, FIRE I, experienced telemetry problems

that made data reduction and analysis difficult as well as control problems during the

second half of the entry that resulted in substandard data. These problems were

corrected before the FIRE II flight, which provided good measurements of the total

and spectral radiation at the stagnation point during the forty second entry period

[76, 771.

The FIRE flight vehicles had an Apollo-like geometry with a layered beryllium

heatshield (the second layer had a geometry identical to Apollo). Each of the three

layers was used up to a temperature limit and jettisoned, resulting in three periods

of prime data during the entry. The first heatshield had a nose radius of 0.935 m and

a diameter of 0.672 m. Only data obtained during the use of this first heatshield will

be examined here, since it coincided with the nonequilibrium portion of the flight.
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The trajectory of the FIRE II flight is reported in Lewis and Scallion [62]. Fore-

body temperaturehistoriesaregivenin Cornette [78]. The instrumentation used for

the flight measurementsis describedby Richardson[61]. In particular, the spectral

responseof the radiometer windowsis reported by Dingeldein [79, Fig.5]. It is flat

between0.23and 2. /lm in wavelength, falling off sharply below 0.2 pm and more

gradually above 2. prn. The design goal is reported as a flat response from 0.2 to

6. #rn. The various reports on FIRE quote actual spectral ranges starting between

0.2 and .23 #rn, and ending between 4. and 6. #m. Taking these variations into

account, the spectral range of 0.23 to 4. /_rn (0.31 to 5.4 eV) is considered to be

closest to the actual window transmission range. FIRE also had scanning spectral

radiometers that were designed to cover the range of 0.2 to 0.6 #rn (2.1 to 4.1 eV).

Mechanical problems during the flight limited forward scans to 0.3-0.5575 #rn, and

backward scans to 0.6090-0.3 #m [77]. The spectral resolution is quoted as 0.004 ]_m,

with a root-sum-square uncertainty in the measured spectra of 4- 23 percent. This

resolution is insufficient to resolve any atomic lines.

For this study of stagnation line radiation, the FIRE vehicle geometry has been

modeled by a sphere with an effective nose radius of 0.747 m. A fully catalytic

wall boundary condition at the flight-measured wall temperature was used. The

cases selected from the FIRE II flight are shown in Table 6.1 [62]. The designations

Case A, B and C will be used below to identify each case. These cases cover the

range from extreme nonequilibrium to near-equilibrium according to Cauchon [76.
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Case

Table 6.1. Selected FIRE II Flight Conditions

Time

(sec)

A 1631

B 1634

C 1637.5

Altitude

(km)

84.59

76.41

67.04

"velocity

(km/sec)

11.37

11.36

11.25

Density T_ qa

(kg/m 3) (K) (W/cm 2)

9.15e-6 460 .162:20%

3.72e-5 615 8.2+20%

1.47e-4 1030 81.7-/-20%

p.14]. Predicted temperature profiles along the stagnation line, using the baseline set

of energy exchange models in LAURA (defined in Ch. 7), are presented in Figs. 6,3-

6.5. For Case A, extreme thermal nonequilibrium is predicted, in agreement with

Cauchon, while Case C is predicted to be in thermal equilibrium through about half

the shock layer.

The flight radiation levels (qR) quoted in the above table were taken from Cauchon

I76, fig.13] and converted from intensities to fluxes assuming a transparent plane-

parallel shock to be consistent with the calculations below. Also shown is the root-

sum-square uncertainty estimated in a post-flight error analysis. It should be noted

that the uncertainty in the radiation level for Case A is probably higher, as the

radiometers were at the lower limit of their sensitivity range for that case. The

measurements show considerable scatter during the early part of the trajectory [76],

with a variation of about a factor of three between high and low readings for the

first several seconds. The scatter decreases as the level of radiation increases. It is

noteworthy that the FIRE I data acquired in this density range for a slightly higher
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velocity (11.57 vs 11.37 km/sec) were higher by a factor of three than the FIRE II

results for both the total and spectral radiometers. The two flights thus suggest a

very sensitive dependence of radiative heating on freestream velocity under these flow

conditions. At the conditions of Case B, the flight-to-flight variation is about a factor

of 1.6. For Case C, it is about 1.3.

Detailed comparisons between the LORAN predictions and the FIRE flight ra-

diometer measurements are given in the following chapter, as part of a study in which

the impact of various nonequilibrium flowfield models on radiation is assessed. Some

additional comparisons between LORAN and other nonequilibrium radiation predic-

tion methods are given here.

The predicted profiles of radiative emission along the stagnation line for Case B, for
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the spectral range in which the radiometer windows transmit, are shown in Fig. 6.6.

Calculations from LORAN and NEQAIR [20] are compared, broken out into the

various radiating mechanisms. The NEQAIR result shown here was computed using

a version of the NEQAIR code which was obtained from Chul Park in 1988. It has

been slightly modified to correct some minor errors this version contained, and to

allow emission calculations within a limited spectral range. The agreement between

the two predictions is excellent except for a discrepancy in the atomic line radiation

near the wall. The predicted wall radiative heat flux differs by only 3 percent between

the two codes.

Figure 6.7 shows the emission profiles for Case C. The overall agreement between
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the two predictions is quite good, although there are some differences. The radiative

flux reaching the wall varies by about 6 percent between these two predictions.

Radiation predictions for these cases have also been made by Carlson and Gally

[35] for a nitrogen freestream. Figure 6.8 can be qualitatively compared to Fig. 6.9.

which is reprinted from Figure 5 of their paper. It shows the approximate spectral

variation of the wall radiative flux over the entire spectrum including the ultraviolet.

Though the predicted magnitudes are lower in Ref. [35] because only nitrogen is

considered, the variations are nonetheless qua]itatively very similar. The details of

the spectra cannot be compared because of the line group presentation used in the

reference. It should also be noted that the chemical kinetics and energy exchange



Table 6.2. Radiative Heat Flux Predictions for FIRE II
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Case

1634 sec

1637.5 sac

NEQAIR

Flux, W/cm 2

1682.

13233.

LORAN

(0.31-16.5 eV)

1806.

14771.

Difference

Percent

7.4

11.6

LORAN

with Absorption

29.35

421.2

models used by Carlson and Gaily are different from those in the LAURA code. As

demonstrated in Ch. 7, these models can have a large impact on the magnitude and

spectral distribution of the predicted radiative heating.

Results have also been computed for the complete radiation spectrum (0.31 to

16.5 eV) for these two cases. These are summarized in Table 6.2, which compares

the emission predictions between NEQAIR and LORAN. The difference, about ten

percent, is minor. The last column shows the total radiative flux reaching the wall

when absorption is included in the transport calculation. The large self-absorption of

the ultraviolet portion of the spectrum is evident here. This wall flux is still somewhat

high relative to the flight data, but the effect of radiation cooling on the flowfield has

not been accounted for in these calculations.

6.2

6.2.1

Nonequilibrium Test Cases

Mars Return

A flowfield solution has been obtained for one of a number of possible flight condi-

tions identified for the return from a mission to Mars [80]. It consists of a 60 ° sphere
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conewith a 1.08 m nose radius flying at 80 km altitude with a velocity of 12 km/sec.

The radiative heating for this case is not too severe, so it provides a good initial

test of the method. Results have been obtained for this case using both tangent slab

transport and the modified differential approximation (MDA). Figure 6.10 compares

the wall radiation flux predictions from the two transport methods. As expected, the

MDA result is lower than the tangent slab result. The low q,_ value for the MDA

result near the stagnation point is believed to be erroneous, however. The sudden

increase in qw at the shoulder in the MDA result certainly is, and is attributable to

the treatment of the outflow boundary. Further work will be required to correct both

of these problems. The qualitative trends of the two methods are similar, showing

the radiative flux increasing with distance from the stagnation point. This increase

is unlike the behavior of convective heating on such a body and results because ra-

diation is a volumetric quantity. As seen in Fig. 6.12 below, the standoff distance is

much larger on the flank than at the stagnation point, and the region of significantly

radiating gas has increased greatly. The vibrational temperature in this nonequilib-

rium flowfield is still high in this region, and a large amount of radiation is therefore

emitted from the gas.

The other variable of interest for coupled flowfields is the divergence of the ra-

diative flux in the shock layer. Figures 6.11 and 6.12 show contour plots of V " _/a

computed with each transport method. The tangent slab result shown in Fig. 6.11 is

in fact just the derivative of qrt along each normal grid line, so the values at neigh-
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boring grid lines do not influence each other. Compared to the MDA result given

in Fig. 6.12 the tangent slab result is very disjointed. Accounting for the long range

influence of radiation with the MDA solution provides a much smoother variation of

U" q'R. Should stability be an issue in a coupled flowfield solution, therefore, the MDA

result might be expected to have less of a destabilizing effect than the tangent slab

result. While this has not traditionally been used as an argument against the tangent

slab approximation, it may prove to be decisive at some flow conditions. For the few

coupled cases run to date, the stability of the CFD solution has not been reduced by

adding radiation.
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6.2.2 Aeroassist Flight Experiment

9o

The Aeroassist Flight Experiment (AFE) is a NASA project intended to obtain

flight data for the design of future Aeroassist Space Transfer Vehicles (ASTV). Mea-

surement of the nonequilibrium radiative heating to the AFE surface is one of the

principle objectives of the project. The aerobrake configuration is a raked cone with

a blunted elliptic nose [81]. Several studies of nonequilibrium radiative heating for

this configuration have been made to provide inputs to the design of the heatshield

[17, 37, 82, 831.

The LORAN method has been used to obtain a prediction of the level and distribu-

tion of radiative heating at the peak heating point in the trajectory. An axisymmetric

LAURA flowfield solution in which the AFE geometry was modeled by a sphere with

an equivalent nose radius of 2.16 m [84] was generated [85]. The flowfield models used

to obtain this solution are the baseline models listed in See. 7.1, including the use of

the Park-87 chemical kinetics. The wall temperature was assumed to be constant at

1750 K.

Radiation predictions were obtained for this case, again using both tangent slab

and MDA transport methods. The tangent slab calculation was completed in about

45 minutes of actual elapsed time on a Silicon Graphics 4D/320, while the MDA result

required about 12 hours of elapsed time. The convergence of the MDA solution for this

case was much slower than that for the Mars return case (in fact this case is not quite

converged), but even this run time is not unreasonable. The radiative heating rates
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predicted for the AFE peak heating point are given in Fig. 6.13. These predictions

are in the same range as earlier computations for the AFE radiative heating [4, 86].

The MDA prediction is again lower than the tangent slab result, with problems still

appearing at the grid boundaries. It is expected that running the MDA transport

to complete convergence for this case would result in closer agreement between the

two, as would a correction for the depressed MDA value near the stagnation line. It

should also be noted that only the nose region of the equivalent sphere flowfield has

been used for the AFE case. Away from the nose the geometry deviates quickly from

the AFE configuration so the results are not of interest.

The radiative flux divergence for the AFE flowfield is presented in Figs. 6.14 and

6.15 for the tangent slab and MDA transport, respectively. Again the smoother
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behavior of the MDA solution can be noted. As mentioned earlier, the tangent slab

method employs a numerical differentiation to obtain dqR/dn. This differentiation

may be adding to the error already incurred by ignoring the variation of the radiation

properties in the direction parallel to the surface.

The amount of heating for the AFE vehicle resulting from radiation in the ul-

traviolet (UV) portion of the spectrum has been the subject of some debate. The

distribution of radiation predicted by the LORAN method is shown in Fig. 6.16.

Curves are shown using the tangent slab and MDA transport models. The relative

importance of different spectral regions varies only slightly between the two transport

methods. Both curves indicate that just over half of the radiative heating experienced

by the AFE spacecraft results from the UV portion of the spectrum. This is a signif-

icant fraction of the total. Radiation in the UV spectral range is highly self-absorbed

(see for example Table 6.2). If the amount of self-absorption is mispredicted only

slightly, the wall radiative flux may be significantly increased for AFE.
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7 Flowfield Model Studies

Flowfield studies were performed using the Langley Aerothermodynamic Upwind

Relaxation Algorithm (LAURA) code developed by Gnoffo [71] to investigate the

sensitivity of the radiation predicted by LORAN. LAURA, like all nonequilibrium

Computational Fluid Dynamics (CFD) codes, contains a number of semi-empirical

models governing the exchange of energy between energy modes. LAURA presently

incorporates the two-temperature model of Park, in which the heavy particle trans-

lational and rotational energy modes are assumed to equilibrate to a temperature Tt

(the combination is referred to as the translational mode), and the vibrational, elec-

tronic, and free electron translational energy modes are assumed to reach a separate

equilibrium with a temperature T, (the combination is referred to as the vibrational

mode). Since radiation is strongly influenced by the amount of energy available in

each mode, a study was conducted to assess the impact that uncertainties in these

energy exchange models have on radiation predictions.

The flowfield cases chosen for these studies are taken from the trajectory of the

FIRE II flight project [61, 62]. Widely varying freestream conditions were selected to

exercise the exchange models over a range of levels of nonequilibrium. A description of

this flight experiment was given in Sec. 6.1.2. All the cases run for the flowfield studies

had 64 grid cells normal to the body in the LAURA solution. This is not sufficient

to resolve the shock, as illustrated for instance in Fig. 6.5. One grid-resolved solution



96

with 128 grid cells was obtained to quantify the effect of this lack of resolution.

The radiation prediction obtained with this refined grid was only about 15 percent

different from that with the coarser grid. This is not enough to change any of the

conclusions drawn from this study.

All the results presented in this chapter are for the stagnation line of the FIRE II

vehicle and use the tangent slab radiative transport method. Only the spectral range

in which the FIRE radiometer windows were transparent (0.31-5.4 eV) has been

included.

7.1 Baseline Models

A discussion of the energy exchange mechanisms and the alternate models used

for each is given in the following sections. The set of models considered as the baseline

consists of the most recent recommendations from Park which have been incorporated

in the LAURA code. They are, for the vibrational-translational energy exchange cross

section:

_ = 10-21(50,000/Tt) 2 m 2 (7.1)

for the dissociation temperature:

T_ = Tir T_ 3 (7.2)

and for the energy exchange in dissociation:

M

AEo = Eo (7.3)
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In addition, the set of chemicalreactionsknownas Park-87[87] is consideredpart of

the baseline.

A run identifier specifiesthe modelsusedfor eachsolution. The baselineset is

denoted vi78. The first two characters, vI, denote the first model for vibrational-

translational energy exchange, Eq. 7.1. The last two, 73, denote the powers in the

dissociation temperature equation. Only alternate models for the energy exchange

in dissociation and the chemical reaction set are flagged in the run identifier for

conciseness. These will be explained as they are used below.

7.2 Energy Relaxation

The modeling of relaxation or equilibration between energy modes is an important

question in nonequilibrium CFD. Generally the process of equilibration is not com-

pletely understood and must be described semi-empirically. Several formulations have

been proposed for many of these models. Data to evaluate the different formulations

are scarce.

To quantify the influence which the different proposed formulations of the models

for energy relaxation have on predictions of radiative heat transfer, a parametric

study was undertaken on a number of such models. The models and formulations

considered, and the results obtained, are detailed below.
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7.2.1 Dissociation Temperature

The dissociation temperature, Ta, is the rate-controlling temperature for reactions

involving the dissociation of a molecular species. Several formulations have been pro-

posed for this temperature, notably by Park and his co-workers [87, 88]. These models

are empirical and consist of a geometric weighting of the translational temperature

Tt and the vibrational temperature Tv as follows:

Td= T2 T= (7.4)

The choice of powers m and n adjusts the weight given to each temperature. The

recent trend has been to increase the weighting of the translational temperature Tt

because of indications that heavy particle collisions are more important than other

mechanisms in causing dissociation. Three different models with (rn, n) equal to

(.5,.5), (.7,.3), and (1,0) are considered here. The first set is the original Park two-

temperature proposal, the second the more recent model, and the third is included

to study the extreme case of dissociation controlled by the heavy particle tempera-

ture alone. The dissociation temperature models will be denoted by 55, 73, and 10,

respectively, in the third and fourth digits of the run identifier.

As shown in Figs. 6.3-6.5, the translational temperature Tt is much higher than

T_ near the shock. Increasing the weighting of the dissociation temperature, Td, on

Tt in Eq. 7.4 therefore results in faster dissociation of the molecular species. This

dissociation removes both translational and vibrational energy, decreasing Tt and T_..

The increased dissociation is shown in Fig. 7.1 which compares the N2 and O_ profiles
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along the stagnationline for CaseA for the two extremeT_ models. The effect on the

temperature profiles is shown in Fig. 7.2 also for Case A. The decreased temperature

results in increased density and a smaller shock standoff distance. For the three

FIRE II cases, placing increasing weight on the translational temperature Tt in the

definition of the dissociation temperature Ta decreases the total radiation. Part of

the decrease occurs in the molecular bands, which depend directly on the molecular

concentrations. The rest of the decrease results from the lower Tv and decreased

standoff distance affecting all three radiating mechanisms. Figure 7.3 shows the

emission profiles for the three Td models for Case A. Case A is she most nonequilibrium

of the three FIRE conditions studied here, and therefore is most sensitive to these

energy relaxation models. The sensitivity to the Td model decreases at the later, more

equilibrium, flight times of Cases B and C.

Tables 7.1-7.3 at the end of this chapter reveal that in all three cases (vllO, v155

and o173) the predictions are closer to the flight data when Tt is weighted more in

the definition of Td, confirming the recent work on this model mentioned above. For

Cases A and B, agreement within about a factor of three is found. For Case C, the case

nearest equilibrium, the variations caused by this model are within the uncertainty

of the flight data.

7.2.2 Vibrational-Translational Energy Exchange

The equilibration of the vibrational and translational energy modes is modeled

using a relaxation time, r_., for each species. Millikan and White I89] proposed a
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Figure 7.1. Effect of Td Models on Molecular Dissociation - 1631 sec

semi-empirical formulation, r Mw, in the range of 300 to 8000 K. Park [90] suggests an

additional collision limiting correction, r_, for high temperatures where the Millikan-

White correlation predicts excessively fast relaxation. A concise explanation of the

failure of the Millikan-White correlation is provided by Sharma and Park [91, p. 136].

The total relaxation time is then

r,_ = roMw + r( (7.5)

where Park's contribution is

= (7.6)

In this expression _ is the average speed and N, the number density of molecular

species s, and av is an effective cross section for vibrational relaxation. The latter

quantity has been the subject of some debate, with three different values receiving
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support in variousefforts to match the limited experimentaldata that has bearing

on the question:

cro = 10-21(50, O00/Tt) 2 rn 2 (r,r)

a_ = 10 -2o m 2 (7,8)

a_ - i0-21 rn a (7.9)

Equation 7.8 is the original proposal, which assumes this cross section to be one tenth

of the elastic cross section. Equation 7.9 was suggested when Eq. 7.8 seemed still too

high. Equation 7.7 is a modification of Eq. 7.9 that reduces the contribution of r_

at low temperatures. All three models are considered here, and are identified by the

notation vl, v2, and v3, respectively, in the first two digits of the run identifier.

A further modification to this energy exchange process has been proposed by

Park [87]. He argues that vibrational relaxation exhibits a diffusion-like behavior at

high temperatures which requires a correction to the relaxation time. However, this

modification requires evaluation of the post-shock levels of Tt and T_. Interpretation of

these quantities in a shock capturing solution is somewhat ambiguous [92]. Improper

definition can lead to instabilities in some circumstances, consequently no attempt

was made to include this modification.

Figures 7.4 and 7.5 present the effect of the different vibrational-translational en-

ergy exchange cross sections in Eqs. 7.7-7.9 on the temperature and radiative emission

profiles predicted for Case A. For a smaller er_, the relaxation time r_ increases. In-

creasing r_ delays the relaxation of translational to vibrational energy. This increases
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Tt while reducing To, as illustrated in Fig. 7.4• Although the standoff distance in-

creases with increasing Tt, the reduction in radiation due to the lower To in this

model more than compensates. The lower T_ reduces the radiation from all three

mechanisms, as shown in Figure 7.5. The lowest radiation for all three FIRE cases is

predicted with Eq. 7.9, and the highest with Eq. 7.8. Comparing the predicted radi-

ation for the v173, v_273, and v373 models in Tables 7.1-7.3 shows that the influence

of a_ is largest in Case A, the most nonequilibrium case.

Again all three cases are closest to FIRE II when the radiation prediction is lowest.

with Eq. 7.9, though only Case A exhibits much sensitivity or discrimination among

the models. The predictions in Case B remain high, while the effect on Case C,

the near-equilibrium case, is within the data uncertainty as was observed for the
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dissociation temperature models.

7.2.3 Energy Exchange in Dissociation

When a diatomic molecule dissociates, the vibrational energy it contained is con-

sumed by the higher ground states (heats of formation) of the constitutive atoms.

The energy thus removed must be accounted for in the vibrational energy equation.

The amount of energy lost is commonly assumed to be the average vibrational energy

at the local conditions, E---_.Because dissociation from a higher vibrational state may

be more probable (the concept of preferential dissociation) several other formulations

have been proposed [69].

One model assumes that the vibrational energy loss in dissociation, _Ev, is some
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fraction of the dissociation energy of a molecule measured from its ground state, D:

AEv = c,D (0 < c, <_I) (7.10)

Sharma et al. [88] have proposed using cl = 0.3. This model was considered, but

since it predicts the non-physical result of a negative T_. in the shock region it was

not pursued [92].

Park [93] has proposed that

AE, = D - kTt (7,11)

so that the energy lost is the dissociation energy minus the average translational

energy. This model arises from the assumption that dissociation only occurs from

levels that are within the average collisional energy of the dissociation threshold

(similar to the mechanism of bound-free radiation). Again, this AE,, is too large

(particularly when Tt is low) and results in an unrealistically small T, behind the

shock [92].

A third proposed model assumes that dissociation occurs from some vibrational

state(s) above the average. This is expressed as:

AE, = c2E_ (c_ > 1.) (7.12)

The best value of c2 to use in this empirical model is unknown, and may depend on

E"-_ (or To). In this work c2 = 2 has been selected to provide an initial assessment of

the model. The suffix 2evs is used in the run identifier for these cases.
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Figure 7.6 compares the temperature profiles for Eq. 7.12 with c2 = 1 (the baseline

model) and c2 = 2 for Case B. The increased AEv in the 2evs model (c2 = 2) reduces

Tv in the region behind the shock where dissociation occurs, and increases it deeper in

the shock layer where recombination begins. It also results in a smaller shock standoff

distance. Figure 7.7 presents the radiative emission for Case B and confirms that the

lower T. near the shock results in reduced radiation, while the higher T. in the shock

layer increases it. This is observed in the tables as a decrease in the molecular band

radiation and a slight increase in the atomic contributions, resulting in a net decrease

in the total radiation. (The lower peak in the dashed curve of Fig. 7.7 is the atomic

radiation peak.)

For Cases Aand B, the decreased radiation resulting from the 2evs model brings
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the prediction closer to the flight measurement, but it remains high (Tables 7.1-7.3).

For Case C the effect is within the data uncertainty, but this is the only model where

the prediction is lower than the flight measurement. Table 7.3 also includes a solution

run with the model of Eq. 7.10 using cl = 0.3 (denoted 3dis) for comparison. A flag

was introduced in LAURA to suppress negative temperatures. The result is not

significantly different so it provides no incentive to pursue this model.

As with the two previous energy exchange models, the sensitivity to this model

decreases as the flowfield tends toward equilibrium. The decreasing sensitivity to all

these models near equilibrium is expected, since they govern the exchange between

energy modes in the two-temperature thermal nonequilibrium model. When dealing

with flowfields near equilibrium, the choice of formulation for these models is not as
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important. The remaining models shown in Tables 7.1-7.3 will be discussed later.

7.3 Spectral Radiation Comparison

To obtain further information on the validity of the energy exchange models, the

FIRE spectral radiometer measurements (vs. wavelength, A, in #m) are compared

with those exchange models whose predictions are closest to the flight measurements.

Only continuum radiation is shown for the predicted spectra, since the resolution

of the flight spectral radiometer is not sufficient to record any line radiation. In

evaluating the flight spectra reproduced here, it should be noted that only a few are

available in the literature. Those that have been published are the ones that were

judged by researchers at the time to contain the least amount of noise. This criterion

had the effect of selecting spectra that correspond to the lower range of flight radiation

measurements. It is not known whether the unpublished data which correspond to

the higher range of measurements had increased intensity levels or broader spectra or

both.

Case A (t=1631 see)

The spectral distribution of radiation has been examined for Case A for the v373

solution, which appears in Table 7.1 to best match the flight data. Figures 7.8 and 7.9

compare the prediction at 1631 sec with a flight spectral radiometer scan at 1631.3 sec.

the closest available, reproduced from Cauchon [77]. Though the prediction is much

higher than the flight scan they are qualitatively similar. Both show radiation from
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the _h+ first negative band, whose two major band heads can be distinguished. (The

spike in the flight spectrum between 0.5 and 0.6/.zm has been attributed to a spurious

signal [77].) Integrating the LORAN predictions over this limited spectral range

results in a value that is high but within the data scatter at this flight condition [76,

Fig. 131.

Case B (t=1634 see)

Figures 7.10 and 7.11 compare the _evs result for Case B, the closest to the flight

data in Table 7.2, to a flight spectrum at 1634.43 sec [77], the closest time available.

The qualitative agreement is comparable to that shown for Case A above. Integrating

the predicted radiation over the range of the spectral radiometer gives a result that

again, while high, is within the scatter of the flight data given in Fig. 13 of Cauchon

[76]. The curve labeled dk73 in this figure will be discussed in Sec. 7.4.

Case C (t=1637,5 see)

Figures 7.12 and 7.13 compare the predicted v373 spectrum for Case C to the

nearest available flight spectrum, at 1636.43 sec.

the closest match to the flight data in Table 7.3.

As in Case A, the v373 shows

By this point in the trajectory,

the radiometer windows are approaching their melting point. A detailed post-flight

analysis determined, however, that the windows cause less than a 10 percent change

in the measured radiation [76]. The intensity spectrum predicted by the v373 is

excessive, having far too much radiative energy in the N + first negative band. The
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curve labeled vleq will be discussed below.

7.4 Nonequilibrium Chemistry

The set of chemical reaction rates used in a flowfield model is somewhat bet-

ter defined than are the rates of energy relaxation. Uncertainties remain, however,

particularly in the extrapolation of the rates to temperatures at which little or no

experimental data is available. Two rate sets are in widespread use: that of Dunn

Kang [94], and that of Park [87]. The latter rate set has been updated several times

[67, 95]. In addition, there are several options for obtaining rates for the backward

reactions. Dunn & Kang originally included curve fits for the backward rates. It is

generally agreed, however, that more accurate results for backward rates are obtained

by computing them from the forward rates and associated equilibrium constants (at

appropriate temperatures). These equilibrium constants are commonly obtained from

curve fits. Recently Gupta [96] generated a new set of curve fits for these constants

which differ noticeably from those proposed by Park. Mitcheltree [97] has used the

LORAN radiation model in the LAURA code to study the influence of these various

sets of chemical rate data for a 12 km/sec entry. A few results for the FIRE II cases

are presented here.

The Dunn & Kang chemical kinetics model, denoted dk, has been applied to each

of the FIRE II cases. As shown in Table 7.2, it results in a closer match of the flight

heating rate for Case ]3. The wall spectral intensity predicted for this model was

therefore also included in Fig. 7.10. This spectrum is much closer to the FIRE II
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measurements than any of those obtained for Case B with the Park kinetics [87]. The

distribution and relative magnitudes of the several band heads in this figure agree

quite well with the flight data, and the Dunn & Kang prediction exhibits quantitative

as well as qualitative agreement with the measured spectrum. For Case A, Table 7.1

shows that the Dunn & Kang model is not an improvement. For the near-equilibrium

Case C, the Dunn & Kang result was obtained for a thermal equilibrium solution.

This resulted in a significantly higher radiation prediction (Table 7.3).

Referring again to the temperature profiles in Figs. 6.3-6.5, it is clear that the

thermal relaxation is in two stages with different time constants. Right behind the

shock Tt decreases rapidly as a result of dissociation, then starts to level off. This sug-

gests the involvement of slow reactions such as ionization, which become increasingly
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important as the level of ionization rises. This two-stage equilibration is much less

apparent for the Dunn & Kang chemical kinetics model profiles shown in Fig. 7.14

for Case B. The improved agreement noted for Case B only with the Dunn & Kang

solution suggests, therefore, that this second equilibration process deserves further

study.

7.5 Nonequilibrium Temperature

The most obvious model of importance to the radiation calculation is the nonequi-

librium temperature model. The choice of the number of temperatures modeled and

the equations used is a crucial one for radiation. In a completely nonequilibrium

situation, separate temperatures would be required for each energy mode of each

species. This is impractical, except perhaps in a Direct Simulation Monte Carlo

(DSMC) solution. Park's two-temperature model, discussed above, seems to provide

reasonable accuracy with the minimum of complexity. If three temperatures are to

be used, there is as yet no consensus about the electron energy equation which should

be employed. Carlson and Gaily [98] have studied this question for Martian return

conditions. Candler [4] has studied the problem for general conditions.

For Case C, which is close to thermal equilibrium, solutions were generated for

both the Park and the Dunn &: Kang chemical kinetics, using Park's two temperature

model or assuming thermal equilibrium (a single temperature T). This allows an

assessment of the extent and impact of thermal nonequilibrium. The results are

included in Table 7.3 (vleq and dkeq, respectively). The vleq result is closer to the
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Table 7.1. Effect of Energy Exchange Models for FIRE II at 1631 sec

Run Flux, W/cm 2 (0.31-5.4 eV)

Identifier

flight

vll0

v155

v173

v273

v373

dk73

v1732evs

Atomic Mol.

Cont. Band

Atomic Total

Line

.16+
.1E-4 .54 .4E-3

.7E-5 2.0 .5E-2

.1E-4 1.1 .9E-3

.IE-4 3.2 .2E-1

.1E-4 .41 .5E-3

.2E-3 1.7 .5E-1

.1E-4 .72 .5E-3

.54

2.0

1.1

3.2

.41

1.7

.73

Table 7.2. Effect of Energy Exchange Models for FIRE II at 1634 sec

Run Flux, W/cm 2 (0.31-5.4 eV)

Identifier

flight
vll0

v155

v173

v273

v373

dk73

v1732evs

Atomic Mol.

Cont. Band

.2E-1

.4E-1

.3E-1

.TE-1

.1E-1

.3

.1

Atomic Total

Line

17.7 2.7

19.1 3.8

17.7 3.3

22.5 5.2

17.6 2.2

3.1 7.9

12.1 6.0

8.2 -4-20%

20.3

22.9

21.1

27.8

19.9

11.4

18.3

flight result and is therefore shown on Fig. 7.12. The agreement between this predicted

spectrum and the flight spectrum is remarkable. (Recall that the spectral radiometer

did not measure below 0.3 _m, so there is nothing to compare with in this range.)

Thus, examining the radiation spectra at this condition suggests that Case C is in

fact in thermal equilibrium, or at least that the distribution of energy between modes

is more nearly in equilibrium than was suggested by the other nonequilibrium CFD

models.
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Table 7.3. Effect of Energy Exchange Models for FIRE II at 1637.5 sec

Run Flux, W/cm 2 (0.31-5.4 eV)
Identifier

flight

v110

v155

v173

v273

v373

dkeq

vleq

v1732evs

v1733dis

Atomic Mol.

Cont. Band

3.8

3.9

3.9

4.1

3.8

5.2

6.5

4.6

4.6

Atomic Total

Line

33.5 45.3

38.9 46.2

35.4 45.7

38.8 49.2

33.6 44.5

18.8 99.9

5.8 75.6

20.8 52.0

15.5 52.6

81.7 =t 2O%

82.7

89.0

84.9

92.1

81.9

123.9

87.8

77.4

72.8
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8.1

Conclusions

Accomplishments

A new method, LORAN, was developed to predict gas radiation in conditions

of thermochemical nonequilibrium. This method includes a moderately detailed ra-

diative spectrum employing the smeared band model for molecular radiation. It is

intended to provide radiation predictions with an accuracy between that of detailed

line by line models and what is obtainable from highly approximate but very fast

step models. The optimization of the method to provide the maximum detail for the

minimum of computational effort is described. Representative results comparing the

method to available ground and flight data indicate that LORAN predicts radiation

with accuracy similar to that of Park's NEQAIR code [20] and the nonequilibrium

method of Carlson et al. [35].

Two options for radiative transport were incorporated in LORAN. The first is the

traditional tangent slab method, in which the radiating medium is assumed to be

one-dimensional. A second transport method was developed without invoking this

approximation by applying a modified differential approximation (MDA). Predictions

of the radiative heat flux to the wall from the two transport methods were compared

and show qualitative agreement with fluxes from the MDA method about 20 to 25

percent lower than from the tangent slab. The profiles suggest that the boundary

conditions of the MDA method might be improved. The variation of the divergence
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of the radiative heat flux, appearing in the energy equation to couple the radiation

and flowfield properties, was also examined and found to be much smoother in the

MDA method. In addition to providing more accurate coupled results, this feature

of the MDA method has the potential to enhance the stability of coupled solutions.

A sensitivity study was performed using LORAN and flowfield solutions from

LAURA to assess the effect that various models used in nonequilibrium CFD codes

have on radiation predictions. The results indicate that radiation is a very sensi-

tive indicator of phenomena occurring in nonequilibrium flowfields. This fact may

be used in conjunction with currently available and future flight and ground-based

data to improve the modeling of such things as exchange between energy modes in

thermochemical nonequilibrium, and chemical reaction rates.

8.2 Future Work

Opportunities and needs for additional work have been identified in several areas.

LORAN makes use of the NEQAIR method and data set for the computation

of electronic energy level populations in nonequilibrium. This QSS algorithm incor-

porates assumptions about the rate of change of energy level populations which are

known to be violated in high gradient flow regions. The rate data which it uses are

also known to contain uncertainties. Both of these areas of potential error should be

investigated in more detail.

Many of the radiative properties used in LORAN are uncertain, so the radiative

heating values it predicts can only be regarded as approximate. An effort needs to be
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undertaken to reduce these uncertainties. To do so may require new measurements to

be made beyond those already available in the literature. In addition, corrections to

the bound-free and free-free atomic continuum absorption coefficients accounting for

deviations from a hydrogenic atomic structure could be included, though an initial

inquiry suggests that these corrections have little effect.

The multi-dimensional transport algorithm presented here is only a first iteration.

Several aspects of this algorithm will be developed further in the future. These include

the application of the method to cases when the absorption coefficient corrected for

induced emission is nonpositive, the optimum selection of the underrelaxation param-

eter for each spectral point, and the identification of improved boundary conditions.

Additional work is needed to make LORAN a practical tool for computing nonequi-

librium flowfields with coupled radiation, especially when coupling effects are signif-

icant and many iterations are required to converge the coupled solution. Work is

continuing to further reduce the time required to compute radiation by applying

vectorization and other efficient strategies.
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A Gaussian Units

Much of the work in radiation has historically been done in the Gaussian system of

units. This system introduces the particular oddity of measuring the electron charge

in statcoulombs. As this particular unit of measure is uncommon, the following

information is provided for the reader.

In the Gaussian system of units:

c=2.9979x10 l° cm/sec

e=4.80286x10 -1° statcoul

h=6.6262x10 -2r erg-sec

k=l.3807x10 -16 erg/K

me=9.1095x10 -2s g

speed of light in vacuum

electron charge

Planck's constant

Boltzmann's constant

electron mass.

The following relations hold among several of these quantities:

The Bohr radius, ao, is given by

a 0

h 2

47r2rr_ee 2

= 0.52918xl0-Scm

The fine structure constant, a, a dimensionless quantity, is

_e 2
a - - 7.292x10 -3

hc

(a.t)

(A.2)
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B Finite Volume Formulation of

Radiative Transport

B.1 Finite Volume Development

The following development is for the modified differential approximation for ra-

diative transport as reported by Modest [27]. The method has been reexpressed for

a non-gray, non-scattering and nonequilibrium medium.

The governing equations for the medium flux and incident intensity are:

_'qm = 4_rj_ - _'_G_ (B.1)

In what follows the rt subscript on the radiative heat flux will be dropped for clarity.

The first of these equations is a scalar equation, while the second is a vector equation.

There are accordingly four unknowns for each spectral frequency chosen: G,, q_,, q_,

and q_,. The only quantity required for coupling to a Computational Fluid Dynamics

(CFD) solution, however, is the divergence of the radiative flux, _. ¢rt. This quantity

is given as a function of G by integrating Eq. B.1 over frequency, so that a solution

for the single unknown G_ at each spectral frequency is sufficient.

To obtain a form of these equations suitable for a finite-volume solution.

rearrange Eq. B.2:

first

--:vG_ = -3¢ (B.3)
,%



Now take the dot product of this equation to allow the substitution of Eq. B.I:

_. va. = -3_?. ¢. = -12_X + 3,4a.

So now rearranging,

13-

(B.4)

iiiv l "if: #

(3_,G, - 127r2, ) dV ,_ V (3_,G, - 12rr3,)'"

(B.6)

Then by application of Gauss' theorem (the divergence theorem), the volume integral

on the left-hand-side can be transformed to a surface integral.

{1 'G_ h) da Vl is " : - ,2.i:l I,. l

The integral is performed by assuming that the absorption coefficient _', and the

gradient of the incident intensity @G_ are constant on each cell face. The integral

then becomes a summation over the six faces of the cell. The notation used for the

cell geometry is that of Gnoffo [99], where I, J, and K denote cell centers, and i, j.

and k denote cell faces. Then

+

,+ °<+,°<+,-tTv 7_,°,]_

grid cell, V.

• = 3_,G,, - 12rU,, (B.5)

In the finite volume approach, this is now to be integrated over the volume of a single
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(B.S)

., and 'eFor the nongray gas found in a shock layer, the radiative properties _ d_

vary over orders of magnitude at various locations and frequencies. To minimize the

numerical difficulties that this variation can introduce, some kind of normalization is

desired. Define

and

}, = _cells j e (B.9)
Ncells

_cells ¢;'_ (B.10)
s_- Ncells

Both these quantities are constant for each frequency considered, and provide a mea-

sure of the approximate magnitude of the emission and absorption at that frequency.

Figure B.1 is an example of the variation of these average coefficients for the Mars

return test case presented in Ch. 6 and demonstrates the wide variation in radiation

properties for various frequencies in a single flowfield.

Proceeding with the finite volume development, now divide Eq. B.8 by )_ on both

sides, and also multiply terms containing G, by 1 in the form of g_/_'_. Define a new

variable F_ = G_/(-]_K_). Then Eq. B.8 becomes:

[ (_, _7P") i+ " hi+lai+l - (_, _7P") i " hiai] r,._.
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Figure B.1. Variation of _',, and _, for a Mars Return Flowfield

J I,J

= V 3_,_;:,F,., - 12_r-_- (B.11)
2 _ / I,j,K

This formulation reduces the variation of the unknown, F_, and of the coefficients of

the equation, making the numerical solution easier.

Now consider the j and j + 1 cell faces in an axisymmetric flow. The gradient

of F_ has no component in the circumferential direction, while the surface normal

on these faces is entirely in the circumferential direction. Therefore the dot product

of these two quantities is zero and the terms on these faces drop out. This is a

mathematical expression of the fact that there is no flux through these cell faces in

an axisymmetric flow. The j and J subscripts then become superfluous, and will be

omitted in the remainder of this development.
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Since the flowfield grid is not orthogonal, it is necessary to use a generalized trans-

formation to obtain finite difference expressions for the gradients in Eq. B.11. The

elements of such a transformation are repeated below from Anderson et al. [100, Sec.

5-6.2], specialized to the case of an axisymmetric flowfield. Second order accurate cen-

tral difference expressions are used to obtain the necessary partial derivatives, where

{, r/, and ( are the coordinates of the orthogonal and uniformly spaced computational

grid corresponding to the i, j, and k grid directions, respectively.

Ii+l, k -- Xi__l, k

x_ = 2
B. 2)

where

xn --O

Xi,k+l -- 22"i,k-1

x¢ = "2

y¢=0

Yi,j+l,k - Yid-l,k _ xi,k sin 0
Y'_ = 2

0 = 2. * arctan [Icell corner
112

B.13)

B.14)

B.15)

B.16)

(B.IT)

Z,,k+, -- Zi,k-1 (B.'21
z_ = 2

z,_ = 0 (B.20

zi+l,k - zi-,,k (B.19
z_ = 2

y¢ = 0 (B.18)
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At the boundaries first order backward differences are applied, except for the axis

of symmetry boundary. At this boundary the coordinates of a "ghost" cell can be

obtained through reflection. Second order accurate central differencing can therefore

be applied at this boundarY. The Jacobian of the transformation can then be obtained

from:

a; = 1 (B.22)
x_y,Tz ( -- x<ynz _

while the metrics of the transformation are given by:

_ = ,]y,Tz¢ (B.23)

{_ = 0 (B.24)

_ = -Jxcy, (B.25)

r/. =0 (B.26)

(n.2r)

q, = 0 (B.28)

^

_ = -Jy,z_ (B.29)

¢_ = 0 (B.30)

(,_ = Jx_y, (B.31

The first derivatives which appear in the gradient terms are then obtained from

O O ¢ "00 (B.32)
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0 0

0 0 0

o_=_+N+¢+N

B.33)

B.34)

so the gradient can be expanded as:

(B.35)

The y-derivative can be omitted since there is no circumferential variation of F, in

the case of axisymmetric flow. Collecting terms then yields

or. oL = 9¢ +v¢_r_=(+_:++=k)-£ +(<:_+¢=_,)o-T (B.36)

Now note that the combination fia is just the directed area of the cell face, or &

The finite volume expression, Eq. B.11, can now be reformulated as:

Pi+I,K

m

_l,k+l

\ i+l,K i+l,K]

-G /- OF,, OF,, '_

I. or_ or_
V&,k+_ -- V¢I,k+_ O( r,++_]

_. /-. 0G -. 0G

Vl,k k l,k

3_,/ l,h"
(B.37)

' and _ are known at cell centers (I,K). The requiredThe radiative properties x, 3_

values of #v at the cell faces can be obtained by averaging the values at the two

nearest cell centers. Then for instance

1 1),_, -7_ , + _,.------
l.,tVrl,K -- Igl/i+l,l. 2 IvI,K

(B.3S)
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This averagehasbeenfound to producebetter stability than the alternate form with

2/(x',r,_.r c + x'_1.tc) because of the extreme variation of the absorption coefficient near

the freestream boundary in particular. The first derivatives of F, in computational

space at the cell faces are obtained by second-order accurate central differences, as

follows:

-'_-i+,,K = (r_,÷,.a. - F,,,K) (B.39)

ar_ 1 (r,,,_ _;,, - r_,+_,., G,,,.,, - r_,,,., )-bT,+,. = _ :5 - + ._ -

The next two differences are the same but with a shift in the i and I indices:

(B.40)

0r'.

_';'-57-i,K = (r-,,x - r_z-, _.-) [B.41)

or. _ (r_,_., - c_,K_, G, _.+,- r_,_,.._,)0-T,,,,-=_ _ + - "2

Along the normal cell faces:

(B.42)

OF, l(F,,+l.u+l-G,,_,,a.÷, r',.,+, x - G,z_,,x)0_ t,a+1 = 2 2 + 7) (B.43)

OF.
= (r,,.,,.,, - r_, _.) (B.44)

O( e,k+_

And again the next two differences are the same except for a shift in the k and K

indices:

(gF_
= iF,,, a. - F,,.K_,) (B.46)
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All theseexpressionscan now be substituted back into Eq. B.37, to obtain:

+6_,,,,:d

_ 16_ I(L,+,,,-÷,----------- [ ,k + l "2+ ,
Kvl,k+t

K j
_1+ 1,/x"

_lJll'+l--_I*I'tf--1)l" _'+1,/_"

2

K I

FVI_I,K+ ! --FvI--I,/,'--I)] "ai,K- F_f,rc-i + 2
2

Fv_+l,K -- FvI-_,-_')- F_z-_'t"+l'" + -- 9
2

+_o,_+,(r_,,,,+,- L,,,,)]- a,,_+_

F_t+_.i,'-i - F_I_,.,,--1)

-E.._.. v&_ 2
Vl,k

-- , I,K

Carrying out the dot products and collecting terms results in:

dlFvl+l,K+l
+ d_F_1+_,_,"+ daFvi+l,K-1 + d,_F,_,,s,-+_+ dsF_,i,K + d6F,,z,K-_

j.
-- _I, K

+drF,q__,u+_ + dsr__,,K + dgF_'r-l,t,'-I = --12rrVt'K'-_u

(BAT)

(B.48)

where

(B.49)

(B.50)

(B.51)
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w,+ i ,i{ _t.l{ Vl.k + l

B.52)

K_
& - VL+_,s" &+_,K -- .--=--V&,K' a,,K

gy " _"u " - . _ .!

---V(;,k._ •_;,k+_ - _,.--VCr,k • _1,k - 31q,K_._; ;. B.,5:3 )

B.,54)

d7 4 _,,K= --_V_i,a .a.K B.,55)

/51t_ --

ds = _,-_--V[I,K ' fi'i,K
lJt,K

1 -K. 1 -_u "
B.56)

1 g. - I g_ -

1_, h- tVl,k

B.57)

The dot products of the metrics with the cell face directed areas which appear

in these coefficients are determined by the grid geometry. These can be written as

follows: [99]

_i,K " ai,K -- [ VI,K( ai-I,K "_- ai,K )4VI,K VI_I,K+ Vz-l,K( ai,K 9- ai+_,K ) • ai,K --

Vl,l,:(a,:,_,,Ka.,,s. + a=,_,,Ka,,i.,¢ + a_,,,s.a.,,K + a=,.Ka,i.K )

+

4 VI,K VI-1,K

Vl-l,K(a_:,,_.-az,,;c + a.-,.;ca..,.;c + az,+:.;..a_:,.K + a--,+,.Ka=,.,c)

4 VI,I<VI - _,K
(B.SS)

- lI.K(ai,h'-1 + ai+l,K-1) + VI.K-l(ai,K + a;+l,K)

I/},K(a.i.K__a.;,_ + a.,._.__a.;,_ + a_,+L_c__a._. _ + a..,+_.zc__a._; _ )

41/},Kt'},K-1

Vl,l<-t(a_, _ca_.r._+ a=,._za.; _ + a_:,+t._;a_;._ + a=,+_._.a._._)
(B.59)
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I } i,(&-_ _ + ¢Tz-t._+t) + V_-t,t,(,Tt._ + &,k+l)]
V(,._, • &,1, = ' 4_'kt,_,_-_,t, _ • 'L,t, =

lLA(azi__kaz,._c + a-.r_l.ka..,. K + a,r_lk+_a_,lc + a._t_,_+,a..,.tc)

4 _")._,-VI- _._;

+ I}-l'/_(a_Ikaz'_" + a'-z_a'-"t" + azlk+_az"t; + a-'_*_a:"u) (B.60)

4 V,._,- _'_._,-_t " _'_' =

4 Vt.l,. r_')._,.__

+'v'i.A.__(a_L, az_., + a,_.,a=,., + a=L,+_a_:_. , + azz.,+_act.,) (B.61)
" 7

Equation B.48 is a matrix equation for the unknowns F_,._,. of the general form

A_ = b. The matrix A and the vector b are functions only of the geometry and the

absorption and emission coefficients. The numerical solution of this type of equation

can be obtained by a number of methods, including direct inversion of the matrix, and

various relaxation methods such as point Jacobi, point Gauss-Seidel, line Jacobi or

line Gauss-Seidel algorithms. The line Gauss-Seidel algorithm has been selected and

applied along each normal grid line to capture the dominant gradients in the radiative

properties. [n this approach, all the F, terms along the I grid line are at the n + 1

time level, while all I+ 1 terms are at the n time level. Terms with I- 1 are known at

time level n+ 1 from the solution of the previous line. The d coefficients, as mentioned

above, are functions only of the geometry and the absorption coefficient. Since both

these quantities are constant for a given transport solution, the d coefficients need

only be calculated once.

The line Gauss-Seidel algorithm results in a tridiagonal matrix equation to be
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solved for each normal grid line. Tile solution of such an equation can easily be

obtained using the Thomas algorithm [lO0] with specification of appropriate boundary

conditions as discussed below. To ensure convergence for this problem, which is a

nonlinear, elliptic equation, underrelaxation is recommended. In fact it is found to

be necessary in this application. It is introduced by defining a corrected value for the

update of ['_ as

r _+r _ r(r_,+_.- r _ ) = (1- _)r2,,. + _r_+_ut,a" -- Fut,K + _Z,K " UZ,K (B.62)

where r is the relaxation parameter and is less than one for underrelaxation. The

expression for F '_+l is obtained by solving Eq. B.48. Incorporating this expression in
--_'I,K

Eq. B.62 and rearranging to the line Gauss-Seidel form results in

drF_+l p=+V d r Fn+, r (dlF _ + 2F_,+,.I.
d6d5 .,a.-t + -.L,. + 4_ _,K+_ = (1 -- r)F_,,,, d5 .,+,.K+,

+d_r,",,,, , + d.r "+' + _ _+' + 4rF_',,_._, + 12_.i,_-a_]B.6a)
' "-- _ VI--I'K+I U81"VI-I'K ,,11." /

The selection of r is discussed in Sec. B.3 below.

B.2 Boundary Conditions

Figure B.2 shows the essential features of the radiation grid. Properties at any

interior point (denoted by filled circles) can be obtained by the solution of Eq. B.63

above. The unfilled circles at the left represent "ghost" points for the syrnmetry

boundary condition at the axis of symmetry. Symmetry boundary conditions also

exist in and out of the page on the "pie slice" sides (see Fig. B.3), but these are
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implicit in the axisvmmetric formulation. The triangles along the upper edge of the

grid represent the outermost grid cell which forms the freestream boundary. The

downward-pointing triangles along the lower edge at right are "'ghost" points for the

outflow boundary. Finally, the barely visible unfilled squares along the lower edge

of the grid represent the center of the surface elements. Each of these boundaries is

discussed separately below.
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Figure B.2. Essential Features of Axisymmetric Radiation Grid

B.2.1 Axis of Symmetry Boundary

This is a symmetry boundary, at which reflection boundary conditions should

apply. Therefore for the unfilled circles in Fig. B.2 along this boundary:

F.(ghost, K) = F.(1, K) (B.64)
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Figure B.3. Top View of Axisymmetric Radiation Grid

This boundary is a singularity in the computational grid, however, where one

surface of a grid cell has zero area. Referring back to Eq. B.37, this means the term

on the second line disappears. The two remaining (-derivative terms at the I grid

line are replaced by first order backward differences to avoid differencing across the

singularity[92]. Then

or. _(r.+,K. - r.,,,.,,+r.,+,_.- r...) (B.6,_)
O_ l,k+l "- _ ' '

0FU --- ! (Ft_/+I,A. -- FVIA " d i- Fp,,+l A" 1 -- rl/..r,h'-,) (B,66)

Substituting, Eq. B.47 becomes

- 1 [ F.,+,

+_(,+_,_'[

_" [O_,+,,_-(r.,+,,,- r., )
K t

b'l+l,K

,t(+1--FVI+I.K--I Ft.'If,J+I- Fuz,lc_l'_]

'2 + :i )j • _i,lj,"
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_/I,k-t- I

-

(B.67)

Carrying out the dot products and collecting terms as before allows this equation to

be put in the form of Eq. B.48, with

i _'_ - . I g. "
dl = : .7;---V_,i+1,I, " &+,,K + _ _,------V_z,k+_ " _z,k+l

z_ i_Vi+l,l £ " _l,k+l

(B.6S)

v,+ 1,/x- I'Jl,k+l " _Vl, k

1 _w _ _ 1 _'b' _

b'i+l ,K 1"I, k

B.70)

1 g,, _ 1 g. - .

t£ t
Ivl,/_4-1

B.rt)

Ul+l,N " I_ul,k+l

gv -. I -gv -.. g,, ".

l]l,k+ 1 -- iVl, k l_l,k

-- 3 ]/ l,K Xvtc v1,1; B.72)

d6 -- ---_V(,,+I,K " ai+t,K + -_

/_+ 1,K

2
/_tVl ,_ K_._I,,_

B.T3)
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d: = 0 (B,74)

d8 = 0 (B.75)

d9 = 0 (B. 75 )

With the appropriate values of ds along this boundary, then, it can be solved with

the same method as the interior points.

B.2.2 Freestream Boundary

The freestream "boundary" is transparent to radiation, and only outgoing radia-

tion is considered. The freestream is assumed to be non-emitting. With these assump-

tions, this boundary can be approximated as a cold wall with complete absorption

(e_ = 1.0). The modified differential approximation is essentially a P-1 method, for

which cold wall boundary conditions can be obtained analytically. Modest suggests

the use of Marshak's boundary condition, which is

-2[ 2-1]_.fi+G_ =0 (B.77)

where z, is the spectral surface emissivity, and h is the outward unit normal vector

describing this boundary surface. Replacing q', in this equation using Eq. B.2 leads

to an equation containing only the one variable G_:

2 (B.rS)

Then dividing by ()',g_) to obtain an equation for F, finally gives

2 - 1 3_----[-_"fi + F,, = 0 (B.79)



Expandingthe gradientof F. gives:

)[3_" - : _),,.
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_)F. 9F.]
a-aT- + _¢. ,,-aT-] +r.=0 (B.s0)

This can be differenced by expressing the derivatives of F, using a central difference

for the {-direction and a first-order backward difference for the ¢'-direction. Denoting

the freestream boundary grid cell by the subscript F, the result is

2 _'&r" al,r ' -' + Vi_.r" _,r -
' lg ! 2
3 _'I,F

+F,,:, r = 0 (B.SI)

where the emissivity for the freestream boundary" was set to 1.0 as mentioned above.

Collecting terms and arranging them in the line Gauss-Seidel form, with the addition

of underrelaxation, gives

"I,FIL, I,F_I + • , vI,F --

, _:, n fi _ _ pn+l(2VC',.r" a,,F + 3 ,,,F)(1 -- r)F_,,F -- rV{x,r" ,,F(r,,+,,,. ) (B.82)
--b'l_ 1,.F,

The dot product terms calculated in Eqs. B.59 and B.61 are at cell faces, To obtain

the values at the cell center required in the above expression, an average at the two

opposing faces of the cell is taken. Then

V¢_,F" at,F =

(B,83)

_¢,.:+,.a,,s+,+ :_O,s.a,,:+ v¢,+:.s+,_,,,,:+,+ :7¢,+:,:.a,,,,:

(B.84)
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where the subscript f + 1 denotes the freestream cell face.

For the freestream boundary" at the axis of symmetry, the reflection boundary

condition Eq. B.64 for F_¢_1 _ is used. Using a first order backward difference at this

point was found to lead to nonphysical results.

B.2.3 Outflow Boundary

Along the outflow "boundary", P_+l,_,. in Eq. B.47 represents the "ghost" point

and must be approximated. This is an arbitrary computational boundary through

which radiating gas and radiation (inwardly and outwardly directed) both pass. The

flowfield boundary condition used in LAURA is a zeroth order extrapolation (i.e..

the derivatives of the flow variables are assumed to be zero across this boundary).

This boundary condition is known to provide better stability than other possible

formulations, and so can also be adopted for the radiation method. Therefore,

r (z + I,K) r (I, i.') (B.SS)

One alternative possibility is to assume a constant slope at this boundary. To perform

an extrapolation of the positive-definite variable F_, a logarithmic extrapolation is

indicated 1

F_(I+ 1,K) _ (B.86)
r.(l- 1,A')

This boundary condition was found to work well in some cases and to cause F_(I, I()

to blow up in the shoulder region in others. This undesirable behavior results fl'om

i Suggested by Gnoffo
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inaccuracies and lack of grid resolution near the shoulder of the body in the test

cases. Logic was implemented to apply the logarithmic boundary condition except in

cases where it would result in an increasing value of F,(I, K) around the shoulder.

Those instances are treated with the zeroth order boundary condition to prevent the

solution from blowing up. Even when the solution does blow up at the shoulder, much

of the rest of the flowfield remains quite unaffected. This suggests that the solution

method is robust.

B.2.4 Wall Boundary

For the medium only intensity, this boundary appears as a cold wall. The Marshak

boundary condition (Eq. B.79) can be differenced at this boundary by recognizing that

the grid lines are normal to the body surface (Fig. B.2 is not to scale). The term

@I'_ • fi is then simply the gradient of F, along the grid lines. This difference is best

expressed in physical coordinates with a first order forward scheme as

F*'*" - P":" 3x'ra ( e-"*- ) F,z,, = 0 (B.87)Ar 2 2 - s,,, /

where the subscript w denotes a "ghost" point on the surface of the body, and

_r = V/(X(I, 1)- z(I,w)) 2 + (z(I, 1)- z(I,w)) 2 (B.ss)

In the Gauss-Seidel format, with the incorporation of underrelaxation, this becomes

(B.89)
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B.2.5 Radiative Heat Flux to Wall

The radiative flux directed to the wall due to emission in the medium can then

be found from solving Eq. B.2.

-1-.

¢ = 3--7, _G_ (B.90)

In this equation, G_ is obtained from the solution of the finite volume problem, E,,

multiplied by the normalizing factor (_g,). To obtain the flux directed at the wall_

the dot product of _'_ with the wall-directed surface normal is required. Then

qw =__.Sw - 1 _G_.fiw (B.91)
3,_"

Again recalling that the grid lines are normal to the body surface, the gradient of G_

can be expressed with a one-sided difference along the normal grid lines. As above,

this is best done in physical coordinates.

1 G.,,_ - G_,, (B.92)
q"_ = 3,¢_ Ar

Alternately, a second order forward difference could be used to represent the gradient.

The total heat flux to the wall at each grid location is then obtained by a numerical

integration over the spectral result above. This closes the numerical problem.

B.3 Numerics and Convergence

B.3.1 Convergence Criterion

The numerical solution of this set of difference equations requires the selection of

an appropriate criterion to test for convergence, Because the radiative properties vary



1,56

over many orders of magnitude, and because the grid introduces numerical errors, the

usual definition of the L2 norm for this purpose is not satisfactory. Instead, a Iocal

error function is defined:

Fn+l n

Lr.t," = ' -IK - F_r._,'[ (B.93)
mean(F2)

where the mean of F2 is obtained as the average of the minimum and maximum values

of F '_ for all I and K on the radiation grid. This definition reduces the value of
_'I,K

Ll K in regions where F '_ is small, relative to the error that would be obtained from
' _'I,/x"

the L_ norm. The result is that convergence is reached faster. Though convergence

may not be entirely complete at those locations where F_z,f`. is small, these locations

contribute little to the coupling with the flowfield. Therefore, the lack of complete

convergence at these locations is deemed acceptable to reduce the computation time.

The actual convergence is determined by the average value of LI,K over the radia-

tion grid. When this average is less than some specified value, convergence is assumed

to have been reached for that particular frequency u. Each frequency is converged

individually, since the rate of convergence depends on the magnitude of the optical

depth and varies considerably with frequency. A typical convergence history for a

single frequency is shown in Fig. B.4. Convergence may be faster or slower for the in-

dividual frequencies, depending at least partly on the magnitude of the optical depth

at that frequency.
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Figure B.4. Typical Convergence History for MDA Solution

Selection of Relaxation Parameter

The relaxation parameter required to obtain a stable solution varies with the mag-

nitude of the optical depth of the flowfield. Very fast convergence can be obtained for

optically thick spectral regions using r=l, meaning no underrelaxation. For optically

thin regions on the other hand, the solution with r=l is unstable. The value r=0.5

has been selected as a good compromise. In future, an algorithm might be developed

to vary the underrelaxation parameter r as a function of the radiation properties in

order to further accelerate the convergence of the complete transport solution.


